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Abstract
Background/Aims: Diabetic kidney disease (DKD) is a leading cause of end-stage renal 
disease (ESRD) worldwide, and the importance of tubular injury has been highlighted in recent 
years. However, the underlying mechanisms and effective therapeutic targets are still unclear. 
In this study, we investigated mtDNA, mitochondrial dynamics, function and metabolic 
pathways to determine if mitochondrial damage plays a critical role in the development 
of tubular injury in DKD patients. Methods: A cross-sectional study was carried out among 
healthy controls (HCs, n = 65), diabetes patients without kidney disease (DCs, n = 48) and 
DKD patients (n = 60). Serum, peripheral blood mononuclear cells (PBMCs) and kidney biopsy 
specimens were obtained from participants. Metabolomics was employed to investigate 
cellular metabolism. Results: DKD patients had decreased mtDNA copy numbers and 
increased mtDNA damage compared to DCs. Mitochondrial fragmentation was specifically 
presented in tubules, but not in podocytes of DKD patients. The accumulation of damaged 
mtDNA and fragmented mitochondria resulted in increased reactive oxygen species (ROS) 
generation, activation of apoptosis and loss of mitochondrial membrane potential (ΔΨm) in 
tubules and PBMCs. Furthermore, glycolysis and tricarboxylic acid (TCA) cycle was perturbed, 
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and increased dihydroxyacetone phosphate (DHAP) and decreased succinyl-CoA synthetase 
(SCS) respectively in these two metabolic pathways were identified as potential biomarkers for 
tubular injury in DKD. Conclusion: Our study indicates that mitochondrial damage could be 
the hallmark of tubular injury in DKD patients, and this would provide a novel and attractive 
therapeutic target to improve this disease.

Introduction

Diabetic kidney disease (DKD) represents the largest single cause of end-stage renal 
disease (ESRD) in Western societies [1, 2]. However, the prevalence of DKD has been rapidly 
increased in recent decades in China, which has become more common than chronic kidney 
disease (CKD) related to glomerulonephritis [1, 3]. This phenomenon has caused profound 
socioeconomic and public health consequences worldwide [3, 4].

Excessive accumulation of extracellular matrix in glomerular, thickening of 
tubulointerstitial compartments and hyalinization of intrarenal vasculature are the specific 
structure changes of DKD [5-7]. Among these features, tubular injury is regarded as part 
and parcel of pathologic lesion of DKD progression, not only secondary to the changes in 
the glomerular compartment. In fact, some studies have reported that the extent of tubular 
injury in DKD, also known as diabetic tubulopathy (dNP), correlates closely with declining 
kidney function [5-10]. The pathogenetic mechanisms of dNP have been investigated in 
some literatures, including tubular hypoxia, inhibition of autophagy and generation of 
reactive oxygen species (ROS). These mechanisms underline the importance of tubular 
injury in DKD development, which is believed to attract more researchers to explore other 
novel pathogenetic mechanisms in coming years [5, 9, 11-14].

Mitochondria are the fundamental subcellular organelles in the cytosol of eukaryotic 
cells that maintain metabolic homeostasis by providing ATP production through oxidative 
phosphorylation (OXPHOS) [6, 15-18]. The central role of damaged mitochondria in 
pathogenetic mechanisms of some diseases, such as neurodegenerative, neoplastic, endocrine, 
and cardiovascular diseases, has been proven by many lines of evidence [17-20]. Kidneys are 
energetically demanding organs and only second to the heart in mitochondrial abundance. 
Because of its active reabsorption of metabolites and protein synthesis, proximal tubules 
use the majority of oxygen for ATP generation and thus contain most of the mitochondria 
in kidneys [19]. Therefore, mitochondrial dysfunction, bioenergetic defects and dynamic 
imbalance are believed to play a critical role in tubular injury in DKD development, which 
has been confirmed by some investigations of patients and animal models [6, 9, 15, 16, 21]. 
Meanwhile, other novel mechanisms related to mitochondrial damage, such as metabolic 
pathways, are still need to be further explored to understand the pathogenesis of DKD more 
completely.

Metabolomics is a systematic evaluation of small molecules and allows exploration of 
the nexus of gene–environment interactions in disease pathways. This technology is now 
frequently used for identifying biomarkers and for elucidating underlying mechanisms in 
diabetes mellitus (DM) and its complications, including DKD [22-25]. Metabolomic analyses 
in clinical studies and animal models have suggested that alterations in TCA cycle, fatty 
acid oxidation and amino acid metabolism are the major pathways affected in DKD. And 
mitochondrial dysfunction is clearly involved in the changes of these metabolic pathways 
[22, 26]. Therefore, our investigation would employ metabolomic analysis to discover some 
mitochondrial metabolites as unique biomarkers and attractive targets to speculate potential 
and novel pathogenetic mechanisms of tubular injury in DKD.

In this study, we described the events of mitochondrial dysfunction and dynamic 
imbalance in the progress of tubular injury in DKD. Furthermore, we explored the alteration 
of metabolic pathways through metabolomics study and verified the discovered biomarkers 
to elucidate the prospective pathogenetic mechanisms. These data would provide novel 
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insights into the fundamental causes and enable the generation of new therapeutic targets 
of this disease.

Materials and Methods

Human Subjects
Patients were enrolled between 2012 and 2016 with written informed consent from the First Affiliated 

Hospital, College of Medicine, Zhejiang University under ethical approval from the hospital’s Institutional 
Review Committee on Human Research. A random plasma glucose level of ≥11.1 or a fasting plasma glucose 
(FPG) level of ≥7 mmol/l was considered to be indicative of diabetes [27, 28]. The patients study groups 
consisted exclusively of patients with type 2 diabetes (T2D). T2D were defined as follows: onset after age 
30, treated by diet or oral hypoglycaemic agents and/or insulin [27, 28]. The DKD group (n = 60) included 
the patients with the history of T2D and presence of microalbuminuria (albumin 30–300 mg/day, n = 10) or 
biopsy-proven DKD (n = 50) [29]. For diabetes controls without nephropathy (DC, n = 48) group, we used 
patients with T2D, no microalbuminuria (albumin < 30 mg/day) and normal renal function [29]. Healthy 
control (HC, n = 65) group included the people with no history of disease or current medication, and their 
age and gender were matched with the DKD and DC group. Estimated glomerular filtration rate (eGFR) was 
evaluated using Chronic Kidney Disease Epidemiology Collaboration (CDK-EPI) equation [30]. The clinical 
baseline characteristics of subjects included in this study was shown in Table 1.

Measurement of Mitochondrial DNA Copy Number by Quantitative Real-Time PCR
Total genomic DNA was isolated and purified from all serum samples using the Axyprep Blood 

Genomic DNA Mini Kit (Axygen, Corning, NY, USA). A quantitative real-time PCR-based method was used for 
the mitochondrial gene ND1 and the nuclear gene β-actin to determine relative mtDNA copy number. ND1 
primers were as follows: 5’-ACACTAGCAGAGACCAACCG-3’ (sense) and 5’-GAAGAATAGGGCGAAGGGGC-3’ 
(antisense). Β-actin primers were as follows: 5’-TAAAGCGGCCTTGGAGTGTG -3’ (sense) and 
5’-GAACACGGCTAAGTGTGCTG-3’ (antisense). Absolute values of mtDNA and nDNA were carried out in 
triplicate in the presence of dilution standards using the iQ™ SYBR® Green Supermix (Cat. 1708880, Bio-
Rad). MtDNA copy numbers were assessed as ND1/β-actin ratio.

Measurement of Mitochondrial DNA Damage
DNA damage was quantified using the elongase method [31] by comparing the relative 

amplification of an 8.843 kb region relative to a 222bp region in the mitochondrial genome with specific 
primers. The primers for long PCR were as follows: 5’-TCTAAGCCTCCTTATTCGAGCCGA-3’ (sense) 

Table 1. Baseline characteristics of healthy control (HC), and diabetic control (DC) and diabetic kidney 
disease (DKD) group. Data are presented as means ± SEM and as median (interquartile ranges) for non-
normally distributed data. * P < 0.05 compared with DC. ** P < 0.01 compared with DC. *** P < 0.001 compared 
with DC. BMI, body mass index (kg/m2); FBS, fasting blood sugar (mmol/l); ACR, albumin/ creatinine ratio 
(g/mol); RBP, retinol-binding protein; Cr, creatinine; NR, not recorded; ND, not done

− −
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and 5’-TTTCATCATGCGGAGATGTTGGATGG-3’ (antisense). The primers for short PCR were as follows: 
5’-CCCCACAAACCCCATTACTAAACC-3’ (sense) and 5’-TTTCATCATGCGGAGATGTTGGATGG-3’ (antisense). 
The relative amplification of the PCR products were quantified by using Quant-iT PicoGreen dsDNA assay 
kits (Cat. P11496, Life Technologies) [31] and calculated by normalizing the fluorescence values of the long 
PCR product to the short PCR product. The decrease in the amplification ratio represented an increase in 
DNA damage.

Measurement of Apoptosis, ROS Production and Mitochondrial Membrane Voltage Potential (ΔΨm) by 
Flow Cytometry
Peripheral blood mononuclear cells (PBMCs) were separated from the blood by density gradient 

centrifuging over Histopaque 1077 (Cat. 10771, Sigma-Aldrich), and then suspended in PBS at a final 
concentration of ~105 cells/ml for flow cytometry.

Annexin V/propidium iodide (PI) (Cat. 556547, BD Biosciences) was used to measure PBMCs 
apoptosis. Annexin V+/PI− PBMCs were in early apoptosis and Annexin V+/PI+ in late apoptosis. Cellular ROS 
production of PBMCs was determined with H2-DCFDA (2’, 7’- dichlorodihydrofluorescein diacetate) staining 
(Cat. C6827, Life Technologies), and evaluated by flow cytometry at 495/530 nm. The dye JC-1 (5, 5′ ,6, 6′ 
-Tetrachloro-1, 1′ , 3, 3′ -tetraethyl-imidacarbocyanine iodide) (Cat. 551302, BD Biosciences) was used for 
ΔΨm assessment. JC-1 was able to form J-aggregates within healthy mitochondria with red fluorescence 
(emission, 590 nm) at polarized ΔΨm. In cells with altered mitochondrial function, JC-1 could only form 
monomers with green fluorescence (emission, 527 nm) in cytoplasm at depolarized ΔΨm. The changes 
of ΔΨm were recorded by flow cytometer for the determination of cells with green fluorescence. All the 
stainings were performed following the manufacturer’s instructions and analyzed by BD FACS Diva software 
(BD Biosciences, Franklin Lakes, NJ).

Immunohistochemistry and TUNEL Assay
Unstained slides of human kidney biopsy tissues were obtained from patients diagnosed as DKD 

(n = 14) and pre-transplant donors as healthy controls (n = 15). Unstained sections were processed for 
immunohistochemical staining with standard protocols. Briefly, after dewaxed and rehydrated, the 1.5-μm 
paraffin-embedded sections were incubated with various primary antibodies: anti-Dynamin-related protein 
(Drp)-1 (Cat. 611113, BD Biosciences), anti-NADPH oxidase (Nox)-4 (Cat. ab133303, Abcam), anti-Mitofusin 
(Mfn)-2 (Cat. ab56889, Abcam), anti-Nitrotyrosine polyclonal antibody (Cat. 06-284, EMD Millipore), anti-
Cytochrome c (Cat. 4280, Cell Signaling), anti-Fission (Fis)-1(Cat. sc-98900, Santa Cruz Biotechnology) and 
anti-Bax (Cat. sc-493, Santa Cruz Biotechnology) antibody. And then secondary antibodies conjugated with 
peroxidase (GK500705, Gene Co., Shanghai, China). Sections were treated with diaminobenzidine followed 
by counterstaining with hematoxylin and examined. Five random fields of each section were photographed 
and the staining was semi–quantified using National Institutes of Health Image J by an investigator blinded 
to the experimental protocol.

To assess the extent of apoptosis, TUNEL staining was performed using an In Situ Cell Death Detection 
Kit (Cat. 11684817910, Roche Applied Science), following the manufacturer’s instructions. Five random 
fields of each section were photographed and the mean numbers of apoptotic cells were determined.

Measurement of Mitochondrial Morphology by Electron Microscopy
Renal cortical and medullary tissues from pre-transplant donors (n=3) and DKD (n=3) group were 

minced into 1-mm3 pieces and processed for electron microscopy with standard protocols. Ultrathin sections 
(80–90 nm) were prepared for examined and photographed using an Olympus transmission electron 
microscope (Tecnai, Tokyo, Japan). To quantify the dysmorphic mitochondria, at least 100 mitochondria in 
proximal tubular epithelial cells from each section were initially identified by an investigator blinded to the 
experimental protocol. Dysmorphic mitochondria were defined as mitochondria with a focal loss of cristae 
and fragmented (< 1 μm in length) [6, 32].

Serum Metabolomic Analysis
The serum samples were mixed with the extraction liquid (350μL, methanol/acetonitrile/ dH2O, 1/2/2, 

v/v/v) and an internal standard (20μL L-2-Chlorophenylalanineas, 1 mg/ml stock in dH2O). After dried and 
resuspended, the supernatant was prepared for analysis by liquid chromatography (LC) mass spectrometry 
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(MS) in Q Exactive Orbitrap (Thermo Fisher Scientific, USA). Metabolites were identified and quantified 
based on in-house database using Tracefinder v3.1 (Thermo Fisher Scientific, USA), and statistical analyses 
of metabolites were further performed using MetaboAnalyst (http://www.metaboanalyst.ca). Briefly, fold 
change analysis in means of metabolites between the studied groups was conducted. The significance of the 
differences in metabolites between the groups was determined in a multivariate linear-regression model 
(volcano plot) after the metabolites were transformed -10 logarithms by Student’s t-tests. Benjamini-
Hochberg step-down approach was used for false discovery rate correction during multiple comparisons. 
Metabolites with significantly different levels among the groups (p < 0.05) were selected to conduct 
metabolite set enrichment analysis (MSEA) by KEGG (Kyoto Encyclopedia of Genes and Genomes, www.
genome.jp/kegg/). The pathways with p ≤ 0.05 in Bernoulli distribution are defined as the pathways which 
were significantly enriched by the metabolites with levels significantly changed among the groups.

The levels of oxaloacetate (OAA), dihydroxyacetone phosphate (DHAP) and succinyl-CoA synthetase 
(SCS) activity were detected using the assay kits (Cat. ab83428, ab197003 and ab196989, Abcam), according 
to the manufacturer’s instructions

Statistical Analyses
Statistical analyses for the baseline characteristics of participants, mtDNA copy number and damage, 

flow cytometry, mitochondrial morphology, immunohistochemistry and validation of metabolites were 
carried out using SPSS software (version 19.0) and GraphPad Prism 5.0 software (GraphPad Inc., San Diego, 
CA, USA). Normally distributed data were presented as mean ± SEM, and analyzed using parametric test (2 
groups, Student’s t-test; > 2 groups, one-way ANOVA). Non-normally distributed data were presented as 
median (interquartile ranges), and analyzed using non-parametric test (2 groups, Mann-Whitney test; > 2 
groups, Kruskal Wallis with Dunn- Bonferroni posthoc test). Spearman’s tests were applied to determine the 
correlation of multiple variables with renal tubular injury in DC and DKD patients. P < 0.05 was considered 
statistically significant.

Results

MtDNA damage was increased in serum of DKDs
Three groups of subjects were compared using a cross-sectional study design: healthy 

controls (HCs, n = 65) comprised of the people with no history of disease, diabetes controls 
without kidney disease (DCs, n = 48) included the T2D patients with normal renal function 
and no history of albuminuria, and diabetic kidney disease patients (DKDs, n = 60) with a 
current albuminuria (Table 1). Groups were matched for age and gender. The DKD patients 
had longer duration of diabetes, higher albumin/creatinine ratio (ACR), retinol-binding 
protein (RBP)/ creatinine (Cr) ratio, systolic and diastolic blood pressure, triglyceride and 
cholesterol, and lower eGFR than DCs.

We found that DCs had significantly higher mtDNA copy numbers compared to DKD 
patients (p = 0.036), whereas no significant difference between HCs and DKDs (Fig. 1A). 
It has been suggested that mtDNA comprises of both intact and damaged molecules [15]. 
Therefore, to confirm the existence of heteroplasmy in mtDNA, a PCR with elongase method 
was used to quantify the level of damaged mtDNA. Relative amplification of mtDNA was 
significantly lower in DKD compared to HC (p < 0.0001) and DC (p = 0.005) (Fig. 1B), which 
demonstrated that the mtDNA in the serum samples of DKDs mainly consisted of damaged 
mtDNA. Further analysis revealed a negative correlation of mtDNA copy number (r = -0.259 
p = 0.007, Fig. 1C) and amplification of mtDNA (r = -0.375 p < 0.0001, Fig. 1D) with urinary 
RBP/Cr ratio respectively. RBP has been widely used as the biomarker of tubular injury [33, 
34].

Mitochondria were fragmented in proximal tubules of DKDs
The status of mitochondrial morphology in kidney biopsy tissues was assessed by 

electron microscopy (EM). In the proximal tubules of DKD group, mitochondria fragmented 
into short rods or spheres and had cristolysis, compared with the elongated mitochondria 
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with organized cristae 
observed in HC group (Fig. 
2A-D). Quantification through 
morphometric analysis 
revealed that the percentage 
of dysmorphic mitochondria 
was significantly increased 
in DKD group (p = 0.017, 
Fig. 2E). The expression 
of mitochondrial-shaping 
proteins was assessed by 
i m m u n o h i s t o c h e m i s t r y. 
The mitochondrial fission 
proteins Drp1 and Fis1 were 
notably up-regulated, and 
the fusion protein Mfn2 
levels were decreased (Fig. 
2F-K). These changes in the 
expression of mitochondrial 
dynamic proteins showed 
the excessive fission of 
mitochondria in the proximal 
tubules of DKD, which 
were consistent with the 
increase of fragmented 
mitochondria in electron 
micrographs. There was no 
significant difference of the 
mitochondrial morphology 
in podocytes between HC and 
DKD group  (Supplementary 
Fig. 1 - all supplementary material available online at www.cellphysiolbiochem.com).

Mitochondria appeared dysfunctional in proximal tubules and PBMCs of DKDs
Accumulation of mtDNA and disruption of the balance between mitochondrial fission 

and fusion would inevitably lead to mitochondrial dysfunction, activation of apoptosis 
and exacerbation of oxidative stress [17, 35]. TUNEL assay was used to observe the 
activation of apoptosis, and the expression of apoptogenic proteins was assessed by 
immunohistochemistry. The percentage of apoptotic cells was significantly increased in 
proximal tubules of DKD group compared to HC group (Fig. 3A and B). Bax and Cytochrome 
C levels, the main proteins in two steps of apoptosis that involve mitochondria [17] were 
both significantly up-regulated (Fig. 3C-F). Since there was no renal injury in DC patients, we 
could not acquire their informed consents to get the kidney tissues using renopuncture. Some 
previous researches have suggested that PBMCs from patients would resemble systemic 
changes in the body and could be used as surrogate cells for kidney tissue [15]. Therefore, 
mitochondrial function, ROS production and apoptosis in kidney of DC group could also be 
evaluated in PBMCs. The flow cytometry analysis of PI/FITC staining demonstrated that the 
apoptotic PBMCs were significantly increased in DKDs compared to HCs (p = 0.002) and 
DCs (p = 0.032) (Fig. 3G and H), which were consistent with the increase of apoptotic cells 
in proximal tubules. Correlation analysis indicated a positive correlation between apoptotic 
PBMCs and RBP/Cr ratio (r = 0.472, p = 0.007, Fig. 3I).

The protein levels of Nox4 and nitrotyrosine, the oxidation species-generating enzyme 
and indicator of nitrosative stress respectively, were assessed to observe ROS production in 
proximal tubules. These two proteins were both significantly up-regulated in DKDs compared 

Fig. 1. MtDNA damage was increased in serum of DKDs. DNA were 
isolated from serum of HCs (n=65), DCs (n=48) and DKDs (n=60). (A) 
MtDNA copy numbers in DKD patients were significantly decreased 
compared to DC patients. A real time qPCR was carried out to 
determine mtDNA copy numbers as mitochondrial (ND1) to nuclear 
(β-actin) ratio. (B) Damaged mtDNA was significantly increased 
in DKD patients. DNA damage was quantified using the elongase 
method. The relative amplification was quantified by normalizing 
the fluorescence values of the long PCR product (8.843 kb) to the 
short PCR product (222 bp). (C and D) Correlation analysis revealed 
mtDNA copy number and amplification of mtDNA was negatively 
correlated with RBP /Cr ratio, respectively. r, correlation coefficient. 
RBP, retinol-binding protein; Cr, creatinine; HC, healthy control; DC, 
diabetic control; DKD, diabetic kidney disease.

Figure 1

A

C D

B
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to HCs (Fig. 4A-D). And 
the ROS levels in PBMCs, 
which were marked by H2-
DCFDA staining, were also 
significantly increased in 
DKDs compared to HCs (p = 
0.038) and DCs (p = 0.024) 
(Fig. 4E and F). In addition, 
mitochondrial dysfunction 
characterized by a notable 
loss of mitochondrial 
voltage potential (ΔΨm) 
was seen in PBMCs of 
DKDs compared to HCs (p = 
0.024), which was assessed 
by JC-1 staining (Fig. 4H 
and I). ROS production (r 
= 0.633, p = 0.037, Fig. 4G) 
and loss of ΔΨm in PBMCs 
(r = 0.847, p = 0.016, Fig. 
4J) was found positively 
associated with RBP/Cr 
ratio, respectively.

Glycolysis and 
tricarboxylic acid (TCA) 
cycle was perturbed in 
serum of DKDs
A total of 1043 

separate metabolites were 
measured in HC (n=30), 
DC (n=27) and DKD 
group (n=30). The three 
groups were distributed 
separately in a principle 
component analysis (PCA) 
(Supplementary Fig. 2A). 
291 metabolites were found significantly different in DKD group compared with DC group 
(Supplementary Fig. 2B and Supplementary Table 1), and 22 of them were identified to 
enrichment in mainly 7 metabolism pathways by KEGG analysis (Fig. 5A, Supplementary 
Fig. 2C and D). By searching KEGG database and literatures, 3 metabolites ultimately, which 
are the components of glycolysis and tricarboxylic acid (TCA) cycle, were chosen as the 
mitochondrial metabolism related biomarkers in DKDs: the levels of DHAP and succinyl-CoA 
were increased and OAA were decreased (Fig. 5B). And the validation experiments of these 3 
metabolites were also carried out by the assay kits. The results of the validation experiments 
were that the levels of DHAP were increased in DKDs compared to HCs (p ＜ 0.0001, Fig. 6A), 
OAA levels were not significantly changed (Fig. 6B), and the activity of SCS was significantly 
increased in DCs compared to HCs (p = 0.004), and decreased in DKDs compared to DCs 
(p = 0.001, Fig. 6C). SCS is an enzyme that catalyzes the reversible conversion of succinyl-
CoA to succinate (Fig. 5B) [36], thus the changes of SCS levels are opposite to that of succinyl-
CoA. In conclusion, the alterations of DHAP and succinyl-CoA levels in DKDs were consistent 
with the results of metabolomics analysis, and OAA levels were not significantly changed. 
Correlation analysis showed a positive correlation of DHAP (r = 0.237, p = 0.014, Fig. 6D) 

Fig. 2. Mitochondria were fragmented in proximal tubules of human 
kidney biopsy tissues from DKDs. (A-D) By electron microscopy, 
mitochondria fragmented into short rods or spheres in DKDs (n=3), 
and the elongated mitochondria with organized cristae observed in 
HCs (n=3). (E) The mitochondrial changes in electron micrographs 
were quantified and included in bar graphs. (F-K) The mitochondrial 
fission protein Drp1 and Fis1 was notably increased and the fusion 
protein Mfn2 was decreased in renal tubules compared to HCs. ×400 
magnification. HC, healthy control; DKD, diabetic kidney disease.
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and OAA levels (r = 0.281, p = 0.003, Fig. 6E) with RBP/Cr ratio respectively, and a negative 
correlation between SCS levels and RBP/Cr ratio (r = -0.298, p = 0.002, Fig. 6F).

Discussion

This study has suggested that mitochondrial damage contribute to the development of 
tubular injury in DKD patients. Accumulation of damaged mtDNA, together with excessive 
mitochondrial fission that regulated this process, would give rise to mitochondrial 
dysfunction and ROS overproduction within cells, and apoptosis and disruption of cellular 
metabolism at the whole-cell level.

Human mitochondrial DNA (mtDNA) is a circular molecule of 16, 569 bp that encodes 
essential protein subunits of oxidative phosphorylation sys tem, which drives mitochondrial 
respiration and provides ATP production [37]. Due to close proximity to the free radicals 
producing electron transport chain and lack of nucleotide excision repair, mtDNA is highly 

Fig. 3. Apoptosis was activated in proximal tubules and PBMCs of DKDs. (A and B) TUNEL procedure 
indicated an increase in apoptotic cells in renal tubules in DKDs compared to HCs. ×400 magnification. (C-
F) The expression levels of Bax and Cytochrome c were both significantly up-regulated in renal tubules in 
DKDs compared to HCs. ×400 magnification. (G and H) Flow cytometric analysis showed increased apoptotic 
PBMCs from DKDs (n=14) compared to HCs (n=9) and DCs (n=19). (I) Correlation analysis revealed apoptotic 
PBMCs was positively correlated with RBP /Cr ratio. r, correlation coefficient; RBP, retinol-binding protein; 
Cr, creatinine; HC, healthy control; DC, diabetic control; DKD, diabetic kidney disease; Cyt.C, Cytochrome c.
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susceptible to ROS induced damage and mutations [37, 38]. The central role of mtDNA damage 
and mutations in pathogenetic mechanisms of common human diseases, such as age-related 
disease and inflammation, has been proven [37, 39]. MtDNA damage and mutations have 
been considered as a potential cause of diabetes [40]. Hyperglycemia-induced excessive 
oxidative stress in diabetes patients [41] leads to the changes in mitochondrial biogenesis, 
which contribute to altered mtDNA abundance [42], and DNA itself becomes damaged 
resulting in accumulation of mutations. In current study, serum samples were obtained to 
further investigate the changes of cell-free circulating mtDNA copy numbers and mtDNA 
damage in diabetes patients [43]. We found that DKD patients had lower mtDNA copy 
numbers than DCs, with increased mtDNA damage (Fig. 1A and B). We speculated that low 
levels of oxidative stress caused by hyperglycaemia in DCs could be an adaptive response 
that increased mtDNA copy numbers to compensate for mitochondria dysfunction and to 
sustain oxidative phosphorylation. Long term and high levels of oxidative stress in DKDs 
might eventually decrease mtDNA copy numbers alongside the increased damaged mtDNA 
[17, 37, 42, 44].

Fig. 4. ROS production was enhanced and mitochondrial membrane potential was decreased in proximal 
tubules and PBMCs of DKDs. (A-D) Expression of nitrotyrosine and Nox4 were both significantly up-
regulated in renal tubules in DKDs compared to HCs. ×400 magnification. (E, F, H and I) Flow cytometric 
analysis showed overproduction of ROS and loss of mitochondrial membrane potential (ΔΨm) in PBMCs 
from DKDs (ROS, n=4; ΔΨm, n=3) compared to HCs (ROS, n=3; ΔΨm, n=5) and DCs (ROS, n=7; ΔΨm, n=4). (G 
and J) Correlation analysis revealed ROS production and loss of ΔΨm was positively correlated with RBP /Cr 
ratio, respectively. r, correlation coefficient; RBP, retinol-binding protein; Cr, creatinine; HC, healthy control; 
DC, diabetic control; DKD, diabetic kidney disease.
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MtDNA copy number, integrity and distribution is maintained and regulated by 
mitochondrial dynamic processes [45]. Mitochondria are highly dynamic organelles that 
continuously undergo fusion and fission, which make up an integrated quality control axis 
with mitophagy to maintain mitochondrial homeostasis in response to stress [6, 15-18]. In 
a number of studies, inhibition of mitochondrial dynamics, especially fusion deficiencies, 
results in accumulation of damaged mtDNA, impaired mitochondrial function, and eventually 
cell death [35, 45]. In this study, we found that most of the mitochondria within tubules in 
DKD patients were fragmented (Fig. 2A-E), accompanied with up-regulated fission proteins 
and down-regulated fusion protein (Fig. 2F-K), which suggested the imbalance between the 
rates of mitochondrial fission and fusion. However, mitochondrial morphology in podocytes 
of DKD patients was not significantly changed compared with HCs (Supplementary Fig. 1). 
This result might be controversial with previous reports of diabetic mouse models [46]. Thus, 
we supposed that disruption of mitochondrial dynamics might have no significant effect 
on podocyte injury, but be specific for tubular injury in DKD patients. In addition, mtDNA 
copy number has been suggested as a biomarker of abnormal mitochondrial dynamics and 
dysfunction [42, 45], and mitochondrial damage plays a critical role in tubular injury in DKD 
[6, 21]. Therefore, we suggested that decreased mtDNA copy number and increased mtDNA 
damage might be regarded as the potential biomarkers of tubular injury in DKD patients. 

Fig. 5. Glycolysis and tricarboxylic acid (TCA) cycle was perturbed in serum of DKDs. (A) Heatmap 
(red=higher, green=lower) of 22 significantly different metabolites in HCs (n=30), DCs (n=27) and DKDs 
(n=30). (B) Schematic of glycolysis and TCA cycle involving 3 metabolites. Red denote increased levels and 
green denote decreased levels. HC, healthy control; DC, diabetic control; DKD, diabetic kidney disease; TCA 
cycle, tricarboxylic acid cycle.
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To verify this hypothesis, we investigate the association between mtDNA and tubular 
injury by correlation analyses. A negative correlation between mtDNA copy number and 
amplification of mtDNA and tubular injury was found (Fig. 1C and D). Hence, in future study, 
we would further explore the specificity of mtDNA as a biomarker and predictor of tubular 
injury in DKD. According to the theories proposed before that circulating cell-free mtDNA 
is increasingly regarded as a mitochondrial damage-associated molecular pattern (DAMP) 
which would stimulate a cellular anti-inflammatory response and cause organ injury [37, 42, 
47], it would be interesting to investigate the mechanisms involved in the release of mtDNA 
from the injured tubular cells to circulation in DKD.

An increasing body of evidence have suggested that progressive accumulation of damaged 
mtDNA and abnormal mitochondrial dynamics (usually excessive fission or/and deficient 
fusion) would trigger ROS overproduction, which, in turn, deteriorate mitochondrial health. 
Eventually, this self-perpetuating vicious cycle would be account for evitable apoptotic cell 
death at the whole-cell level [17, 40, 48]. In our study, accompanied with mtDNA damage and 
excessive mitochondrial fission, the expression of mitochondrial function-related proteins 
Nox4, Bax and Cytochrome c was significantly increased in the tubules (Fig. 3A-F and 4A-D). 
It has been proven that the NADPH oxidases of the Nox family are a major source of ROS in 
diabetic kidney [12, 41]. As a member of the Nox family, Nox4 is unique as it is primarily 
localized in the mitochondria and the most abundant Nox isoform in the renal system, and its 
activity would result in the overproduction of mitochondrial ROS (mtROS) [12, 49, 50] (Fig. 
4C and D). Then the accumulation of mtROS stimulated the translocation of proapoptotic 
protein Bax and the release of the essential component of the respiratory chain Cytochrome 
c from mitochondria (Fig. 3C-F), which triggered the mitochondria-mediated apoptosis 
pathways [51, 52] and led to the increase in apoptotic tubular cells in DKD patients (Fig. 
3A and B). Moreover, mtROS overproduction and activation of mitochondria-mediated 
apoptosis would induce mitochondrial dysfunction [35, 53], which would form a vicious 
cycle [48, 54]. Because PBMCs can be used as surrogate cells for kidney tissue [15], and 
alterations of mitochondrial function in PBMCs better correlate with that in kidney tissues 
than in other organs [55], we also performed detection of mitochondria on them. Consistent 

Fig. 6. Validation experiments of DHAP, OAA and SCS levels in serum of DKDs. (A) DHAP levels were increased 
in DKDs (n=60) compared to HCs (n=65), (B) OAA levels were not significantly changed, and (C) the activity 
of SCS was significantly increased in DCs (n=48) compared to HCs (n=65), and decreased in DKDs (n=60) 
compared to DCs. (D-F) Correlation analysis of 3 metabolites with tubular injury. DHAP (D) and OAA levels 
(E) were positively correlated with tubular injury respectively, SCS levels (F) were negatively correlated 
with tubular injury. r, correlation coefficient. RBP, retinol-binding protein; Cr, creatinine; HC, healthy control; 
DC, diabetic control; DKD, diabetic kidney disease; SCS, succinyl-CoA synthetase; DHAP, dihydroxyacetone 
phosphate; OAA, oxaloacetate.

A B C

D E F

Figure 6



Cell Physiol Biochem 2019;52:156-171
DOI: 10.33594/000000011
Published online: 28 February 2019 167

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Jiang et al.: Mitochondrial Damage in Tubules of DKD

with the results in tubules, enhanced ROS production (Fig. 4E and F), activation of apoptosis 
(Fig. 3G and H) and concomitant mitochondrial dysfunction characterized by ΔΨm loss (Fig. 
4H and I) was discovered in DKD group. Additionally, fragmented mitochondria accumulated 
specifically in tubules (Fig. 1, 2 and Supplementary Fig. 1), and apoptosis, ROS production and 
loss of ΔΨm in PBMCs were positively correlated with tubular injury (Fig. 3I, 4G and J). Thus 
we supposed that mitochondrial damage in PBMCs could reflect that in tubules, and could 
be regarded as a novel indicator of tubular injury in DKD. Meanwhile, as PBMCs represent 
a systemic change in the body [15], and the altered mitochondrial function in PBMCs has 
also been found in other diseases [56, 57], therefore, further studies are still needed to 
determine specific mitochondrial changes in PBMCs associated with tubular injury in DKD, 
and to explore the molecular mechanism of this change. To sum up, our findings provided the 
evidence that mitochondrial dysfunction accompanied by the overproduction of mtROS and 
activation of mitochondria-mediated apoptosis could be the critical mechanism involved in 
the tubular injury in DKD patients.

Damaged mtDNA and fragmented mitochondria result in perturbed cellular 
metabolism which may underlie the mitochondrial dysfunction [39, 45, 58, 59]. Therefore, 
a metabolomics analysis was employed to investigate the changes in cellular metabolism 
in DKD. As mitochondrial damage was the hallmark of tubular injury in DKD patients in 
our study, we focused on the TCA cycle and glycolysis, which are integrated to catabolize 
glucose to provide energy for cellular function [60]. We found that DHAP and succinyl-CoA 
was increased and OAA decreased in serum from DKD patients compared with DC patients 
(Fig. 5A and B). DHAP is the substrate for isomerization to glyceraldehyde-3-phosphate 
in glycolysis [60]. The increased generation of DHAP in DKD patients indicated excessive 
glycolysis which is not a benign sequence of reaction in cancer, aging, Parkinson’s disease and 
other diseases [58, 61]. It has been suggested that the increase in glycolysis is a compensatory 
effect of maintaining ATP synthesis [61, 62], which was reflected by the increased DHAP 
accompanied with mitochondrial dysfunction and the disrupted TCA cycle in DKD patients 
in our study. Succinyl-CoA and OAA are both the metabolic intermediates in the TCA cycle. 
Conversion of succinyl-CoA to succinate is catalyzed by SCS with simultaneous formation 
of GTP [60]. According to this fact, we speculated that the increase of SCS activity in DCs 
in our validation experiments (Fig. 6C) might be a compensatory response for maintaining 
the normal succinyl-CoA levels. But because of the more severe mitochondrial dysfunction, 
the SCS activity in DKDs eventually decreased (Fig. 6C), resulting in the accumulation of 
succinyl-CoA in TCA cycle. It has been reported that the loss of SCS subunit would lead to 
mitochondrial damage and development of some diseases [63, 64]. Thus, succinyl-CoA 
accumulation and SCS deficiency might be the important break points in the TCA cycle in DKD 
patients. Although the decrease in OAA levels was not verified in our validation experiments, 
a positive correlation of OAA levels with tubular injury was found (Fig. 6E). Furthermore, 
OAA treatment has been reported effective in neuron damage, stroke and diabetes [65], so 
the role of OAA in progression of DKD could not yet be negated. Since correlation analysis 
revealed that DHAP and SCS levels were positively and negatively associated with tubular 
injury, respectively (Fig. 6D and F), we supposed that DHAP and SCS could be identified as the 
potential biomarkers for tubular injury in DKD, revealing the specific mitochondrial damage 
in tubules. As the prominent contribution of specific tissues to changes of metabolites in 
circulation has been reported [66, 67], we would jointly conduct metabolomics analysis of 
serum, kidney tissue and tubule cells in vivo and in vitro in future research, to explore the 
specificity of DHAP and SCS as biomarkers of tubular injury in DKD, and the mechanism of 
changes of metabolites in circulation caused by this injury.
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Conclusion

In our study, mitochondrial damage was considered as the hallmark of tubular injury 
in DKD patients. Furthermore, 2 metabolites in glycolysis and TCA cycle were identified 
as potential biomarkers. This study of mitochondria would provide a novel and attractive 
therapeutic target to improve tubular injury in DKD.
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