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Abstract
Background/Aims: Far-infrared (FIR) irradiation has been reported to exhibit various 
biological effects including improvement of cardiovascular function. However, its effect on 
the differentiation of stem cells has not been studied. Using tonsil-derived mesenchymal stem 
cells (TMSC), we examined whether and how FIR irradiation affects adipogenic or osteogenic 
differentiation. Methods: TMSC were exposed to FIR irradiation (3-25 μm wavelength) for 
various times (0, 30, or 60 min), and then adipogenic or osteogenic differentiation was 
induced for 14 days with its respective commercially available differentiation medium. At the 
end of the differentiation, the cells were stained using Oil red O or Alizarin red S solution, and 
the expression of differentiation-specific proteins was analyzed by western blotting. Results: 
FIR irradiation did not alter cell viability or the expression of MSC–specific surface antigens 
(CD14, CD34, CD45, CD73, CD90, and CD105) in TMSC. However, FIR irradiation significantly 
inhibited adipogenic differentiation of TMSC, as evidenced by decreased Oil red O staining 
as well as protein expression of peroxisome proliferator-activated receptor γ and fatty acid 
binding protein 4. In contrast, FIR irradiation induced osteogenic differentiation, as evidenced 
by increased Alizarin red S staining as well as protein expression of osteocalcin and alkaline 
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phosphatase. Treatment with heat alone did not inhibit the adipogenic differentiation of 
TMSC, suggesting that the inhibitory effect on adipogenic differentiation was not due to heat 
induced by FIR irradiation. However, heat alone did stimulate osteogenic differentiation, but 
to a lesser extent than FIR irradiation. Furthermore, FIR irradiation increased intracellular Ca2+ 
levels and the activity of protein phosphatase 2B (PP2B) in TMSC. Treatment with cyclosporin 
A, a specific PP2B inhibitor, reversed the inhibitory effect of FIR irradiation on adipogenic 
differentiation of TMSC, but had no effect on osteogenic differentiation. Conclusion: Our data 
demonstrate that FIR irradiation inhibits adipogenic differentiation but enhances osteogenic 
differentiation of TMSC; the inhibitory effect on adipogenic differentiation is non-thermal and 
mediated at least in part by activation of Ca2+-dependent PP2B.

Introduction

Stem cells are generally defined as undifferentiated cells capable of self-renewal and 
differentiation into specialized cells, and can be classified based on their origin [1]. Stem cells 
are largely classified into two groups; embryonic stem cells derived from totipotent cells of 
the early mammalian embryo [2] or mesenchymal stem cells (MSC) derived from a variety 
of adult tissues, including bone marrow, adipose, and umbilical cord tissue [3-6]. MSC can 
mainly be differentiated into skeletal cells, such as osteocytes, chondrocytes, and adipocytes 
[7, 8]. We previously established tonsil-derived MSC (TMSC) from human palatine tonsils, 
and they have been showing great differentiation potentials into several cell types, including 
adipocytes, osteocytes, chondrocytes, Schwann cells, muscle cells, insulin-releasing cells, 
tenocytes, and parathyroid hormone-releasing cells [9-15]. In addition to their superior 
differentiation potential, TMSC are obtained by completely non-invasive tonsillectomy and 
proliferate faster (~1.5 times faster) than bone marrow-derived MSC (BM-MSC). Because 
of these advantages, TMSC have been proposed as a potential new MSC for clinical studies 
[16-18].

Far-infrared (FIR) is one of the three infrared regions, and is defined by the International 
Commission on Illumination as an invisible electromagnetic wave with a wavelength of 
3-1000 μm [19]. FIR irradiation is known to contribute to a variety of biological effects 
including improved vascular function [20], which is attributable in part to upregulation of 
the vasodilator nitric oxide (NO) in endothelial cells (EC) [21]. Furthermore, FIR irradiation 
has also been reported to inhibit cancer cell proliferation through regulation of heat shock 
protein 70A [22]. Although a single recent paper described the effect of FIR irradiation on 
the basic properties of murine BM-MSC, such as proliferation and survival [23], the effect of 
FIR on differentiation has not been reported.

Protein phosphatase 2B (PP2B, also known as calcineurin), a Ca2+/calmodulin-
dependent serine/threonine phosphatase, is an important mediator of intracellular Ca2+ 
signaling in a number of cell types, and is inhibited by cyclosporin A (CsA) and FK506 [24, 
25]. A previous study revealed that increased activity of Ca2+-dependent PP2B in 3T3-L1 
preadipocytes inhibits adipocyte differentiation by inhibiting the expression of peroxisome 
proliferator-activator receptor γ (PPARγ) and CCAAT/enhancer-binding protein alpha (C/
EBPα) [26]. Furthermore, PP2B is expressed in osteoblasts and regulates bone formation in 
vitro and in vivo [27]. However, little is known about the direct effect of PP2B on adipogenic 
or osteogenic differentiation in stem cells.

We previously reported that FIR irradiation increases NO production through 
intracellular Ca2+ mobilization in bovine aortic EC (BAEC) [21]. Based on these findings, we 
investigated whether FIR irradiation also increases intracellular Ca2+ levels in TMSC and its 
potential effects on Ca2+-dependent PP2B activity, which in turn affects the differentiation 
potential of TMSC into adipocytes and osteocytes.

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG
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Materials and Methods

Isolation and culture of TMSC
TMSC were isolated as described previously [9]. Briefly, TMSC were isolated from the tonsillar tissues 

of patients (aged ≤ 10 years) undergoing tonsillectomy. Informed written consent was obtained from the 
legal guardians of the patients who participated in this study and the study protocol was approved by the 
Institutional Review Board (ECT-11-58-37) of Ewha Womans University Mokdong Hospital.

Isolated tonsil tissues were digested in RPMI-1640 medium (Invitrogen, Carlsbad, CA, USA) containing 
210 U/mL collagenase type I (Invitrogen) and 10 mg/mL DNase (Sigma-Aldrich, St. Louis, MO, USA) and 
incubated for 30 min at 37°C. After incubation, the digested tissues were filtered using a wire mesh and 
washed twice in Dulbecco’s Modified Eagle Medium containing high glucose (4,500 mg/L) (DMEM-HG; 
Welgene Inc., Gyeongsan, Korea) and 20% fetal bovine serum (FBS; Invitrogen) and once in DMEM-HG 
with 10% FBS. Mononuclear cells were obtained by density gradient centrifugation using Ficoll-Paque (GE 
Healthcare, Little Chalfont, UK) and plated in a T-150 culture flask (Corning, Tewksbury, MA, USA) in DMEM-
HG with 10% FBS. After incubation for 48 h, non-adherent cells were removed by washing and adherent 
cells were further incubated in the cell culture incubator at 37°C under 5% CO2.

FIR irradiation
FIR irradiation was performed using an AC-driven constant-power lamp controller (Model No. S-O.T.H 

9H, Saeik Medical Co., Ltd., Bucheon, Korea) with a ceramic infrared radiator (Model No. IOT/90-250, 
Elstein-Werk M. Steinmetz GmbH & Co. KG, Northeim, Germany), as described previously [28] with slight 
modifications. The emission wavelength of the FIR radiator ranged from 3 to 25 μm, with a peak at 7.5 μm. 
The FIR radiator was pre-warmed for 30 min at room temperature, and then TMSC, cultured in a 60-mm 
cell culture plate with 4 mL medium, were placed at a distance of 30 cm from the radiator and exposed for 
the indicated times (0, 30, or 60 min). TMSC were further incubated in the culture chamber at 37°C under 
5% CO2. In a separate experiment, TMSC were incubated at 38°C on a Chamlide heat incubator (Model No. 
CU-109, Live Cell Instrument, Seoul, Korea) for 30 min.

Cell viability and proliferation
Cell viability was assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide 

(MTT) solution. Cells were seeded onto 48-well plates and exposed to FIR irradiation for the indicated times. 
MTT solution was added to each well, and the culture plate was incubated for 2 h in a 37°C incubator. The 
medium was removed and the purple formazan product was dissolved using dimethyl sulfoxide. Dissolved 
solutions were transferred to a 96-well plate and the absorbance was measured at 540 nm with a microplate 
reader. For the measurement of proliferation, TMSC exposed to FIR irradiation were further incubated for 
18, 24, or 48 h and subjected to MTT assay. Proliferation was expressed as the absorbance at indicated times 
relative to that at time 0.

Fluorescence-activated cell sorting (FACS) analysis
After exposure of TMSC to FIR irradiation for 0 or 30 min, cells were collected and stained with 

phycoerythrin (PE)-conjugated anti-human CD14, CD34, CD73, and fluorescein isothiocyanate (FITC)-
conjugated anti-human CD45, CD90, CD105 antibodies. Stained cells were analyzed using a FACSCalibur 
system (BD Biosciences, San Diego, CA, USA). All antibodies were purchased from BD Biosciences.

Adipogenic or osteogenic differentiation and drug treatments
TMSC at a confluence of 80-90% were exposed to FIR irradiation for the indicated times and incubated 

in commercially available adipogenic or osteogenic differentiation medium (Cat. No. A10070-01 or A10072-
01; Invitrogen) for up to 14 days. The culture medium was changed every 3 or 4 days. In some experiments, 
TMSC were pretreated with CsA (0, 0.25, 0.5, and 1 μM; Sigma-Aldrich) before exposure to FIR irradiation 
and then subjected to differentiation. After differentiation, cells were fixed with 4% formalin for 30 min 
and washed with phosphate-buffered saline. Adipogenic differentiated cells were stained with Oil Red O 
solution and osteogenic differentiated cells with Alizarin red S solution for 1 h at room temperature. The 
remaining excessive staining solution was removed, and stained cells were visualized under a microscope.
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Western blot analysis
Cells were extracted using lysis buffer containing Protease Inhibitor Cocktail™ (Roche Molecular 

Biochemicals, Indianapolis, IN, USA). The protein samples (equal quantities of 20 μg) were separated 
using SDS gel electrophoresis and transferred onto nitrocellulose membranes. The blots were probed 
with primary antibodies against transcriptional coactivator with PDZ-binding motif (TAZ), PPARγ, or fatty 
acid binding protein 4 (FABP4) (each at a 1:1000 dilution; Cell Signaling Technology, Boston, MA, USA); 
osteocalcin (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA); alkaline phosphatase (ALP; 1:1000; 
Abcam, Cambridge, UK); and glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:2500 dilution; 
AbFrontier, Seoul, Korea) followed by the corresponding secondary antibodies, and the proteins were 
detected by enhanced chemiluminescence detection methods (Amersham, Buckinghamshire, UK).

Intracellular calcium measurement
The membrane-permeable calcium indicator dye Fluo-4 AM (Invitrogen) was used to measure 

intracellular Ca2+ levels as described previously [21]. Fluorescence images were obtained using a confocal 
microscope (LSM5 Pascall, Carl ZEISS, Oberkochen, Germany).

Protein phosphatase 2B (PP2B) activity assay
PP2B activity was measured using the PP2B cellular activity kit (Enzo Life Sciences, Farmingdale, NY, 

USA) with minor modification. Briefly, TMSC were exposed to FIR irradiation for 0 or 30 min and rinsed 
in ice-cold tris-buffered saline (20 mM Tris, pH 7.2, 150 mM NaCl). After washing, cells were lysed in 
lysis buffer with protease inhibitors and centrifuged at 16,000 g for 20 min. To remove free phosphate, 
the supernatant extracts were exposed to desalting column resin. The extracted supernatant (500 μg) was 
immunoprecipitated using anti-PP2B antibody (Cell Signaling Technology) and washed three times with 
lysis buffer. The immunoprecipitated samples were assessed using a PP2B cellular activity kit (Enzo Life 
Sciences) as described in the instruction manual. PP2B activity was quantified by measuring absorbance at 
620 nm and normalized using the controls.

Statistical analysis
All results are presented as the means ± standard deviations (S.D.). Statistical significance was 

determined using Student’s t-test. A value of p<0.05 was considered significant. All experiments were 
performed at least three times.

Results

FIR irradiation does not affect cell viability, expression of MSC-specific surface antigen 
markers, and proliferation of TMSC
To assess whether FIR irradiation affects the viability of TMSC, cells were exposed to 

FIR irradiation for 0, 30, or 60 min at room temperature. Results of the MTT assay showed 
that FIR irradiation did not affect cell viability, even at the maximum exposure time of 60 min 
(Fig. 1A). Next, we examined whether FIR irradiation alters the surface immunophenotypic 
character of TMSC. FACS analysis revealed that the surface markers tested in this study were 
not altered by FIR irradiation (Fig. 1B); TMSC in the absence or presence of FIR irradiation 
were negative for hematopoietic surface markers (CD14, CD34, and CD45) and displayed 
significant positive expression of MSC-specific surface markers (CD73, CD90, and CD105). 
Cell proliferation was also tested by further incubation of TMSC for 0, 18, 24, or 48 h after FIR 
irradiation. FIR irradiation affected unlikely TMSC growth compared with untreated controls 
(Fig. 1C). Together, these results suggest that FIR irradiation did not alter the viability, surface 
antigen expression, or proliferation of TMSC under our experimental conditions.
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Acute exposure to FIR irradiation inhibits adipogenic differentiation but promotes 
osteogenic differentiation of TMSC
To investigate whether FIR irradiation affects the differentiation of TMSC, cells 

were exposed to FIR irradiation for 30 and 60 min and then further differentiated using 
commercially available adipogenic or osteogenic differentiation medium for up to 14 days. 
As shown in Fig. 2A, lipid accumulation was significantly suppressed by FIR irradiation in a 
time-dependent manner. The expression levels of the adipocyte-specific markers PPARγ and 
FABP4 were also significantly downregulated (Fig. 2B). In contrast, as exposure time of FIR 
irradiation increased, mineralization was promoted and the protein expression of osteocyte-
specific markers osteocalcin and ALP also significantly increased (Fig. 2C, D).

Fig. 1. FIR irradiation does not alter cell viability, expression of MSC-specific surface antigen markers, and 
proliferation of TMSC. TMSC were exposed to FIR irradiation at room temperature for 0, 30, and 60 min. (A) 
The viability of TMSC was measured by MTT assay. (B) The profiles of MSC-specific surface markers were 
analyzed by flow cytometry. (C) After FIR irradiation (30 min), the cells were further incubated for 0, 24, and 
48 h in the cell culture incubator and cell growth was determined by MTT assay. The values of cell growth 
are expressed as means ± S.D (n=3).
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The inhibitory activity of FIR irradiation on adipogenic differentiation is not caused by 
thermal effects
Previously, we reported that FIR irradiation increases the temperature of the culture 

medium to 38 ± 1°C [28]. Based on this finding, we examined whether the heat alone induced 
by FIR irradiation regulates adipogenesis or osteogenesis of TMSC. Compared with untreated 
control cells, heat treatment (at 38°C) alone using the Chamlide heat incubator did not inhibit 
adipogenic differentiation of TMSC as evidenced by Oil red O staining (Fig. 3A) and the 
expression of PPARγ and FABP4 (Fig. 3B). Next, we tested the thermal effect of FIR irradiation 
on osteogenesis of TMSC. Although heat alone did stimulate osteogenic differentiation of 
TMSC, as evidenced by Alizarin red S staining, its effect was smaller than that with FIR 
irradiation (Fig. 3C). Furthermore, heat alone also increased osteocalcin expression but to 
a lesser extent than FIR irradiation (Fig. 3D). However, the protein expression of ALP was 
not significantly different between heat-treated and FIR-irradiated TMSC. Together, these 
results suggest that the inhibitory effect of FIR irradiation on adipogenic differentiation of 
TMSC is unlikely to be due to the thermal effect caused by FIR irradiation.

Fig. 2. Acute exposure to FIR irradiation inhibits adipogenic differentiation and promotes osteogenic 
differentiation of TMSC. TMSC were exposed to FIR irradiation for 0, 30, and 60 min and further incubated 
in commercially available adipogenic or osteogenic differentiation medium for up to 14 days. (A) The 
accumulation of lipid droplets was assessed using Oil red O staining. Scale bar = 100 μm. (B) Protein levels 
of PPARγ and FABP4 were measured by western blot analysis. GAPDH was used as a loading control for 
normalization. (C) Mineralization was assessed using Alizarin red S staining. Scale bar = 200 μm. (D) 
Protein levels of osteocalcin and ALP were measured by western blot analysis. GAPDH was used as a loading 
control for normalization. The results are representative of three independent experiments, and each bar 
represents the mean ± S.D. Differences were statistically significant at *p<0.05, **p<0.01, and ***p<0.001.

Fig. 2 Fig. 2   
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Transcriptional coactivator with PDZ-binding motif (TAZ) is not involved in the adipogenic 
or osteogenic differentiation of TMSC under our experimental conditions
TAZ is a well-known transcriptional modulator that regulates adipogenesis and 

osteogenesis of MSC; it inhibits adipogenic differentiation and promotes osteogenic 
differentiation [29]. Based on this knowledge, we investigated whether TAZ regulates the 
FIR irradiation–induced decrease in adipogenesis and increase in osteogenesis of TMSC. If 
this is the case, we expected that FIR irradiation would increase TAZ protein expression. 
Under our conditions, however, FIR irradiation for 30 min decreased the protein level of 
TAZ (Fig. 4), suggesting no evidence for involvement of TAZ in the adipogenic or osteogenic 
differentiation of TMSC by FIR irradiation.

Cyclosporin A, a specific inhibitor of protein phosphatase 2B (PP2B) activity, reverses the 
effect of FIR irradiation on adipogenic differentiation but not osteogenic differentiation
Several studies have shown that PP2B, known as an intracellular Ca2+-dependent 

phosphatase, exhibits a regulatory role in adipogenesis or osteogenesis [26, 27]. These 
reports, together with our previous study showing increased intracellular Ca2+ levels in 
FIR-irradiated BAEC [21], prompted us to examine whether PP2B is also involved in FIR 
irradiation–mediated effects on each type of differentiation in TMSC. As in BAEC, we found 
that FIR irradiation increased intracellular Ca2+ levels in TMSC (Fig. 5A). Furthermore, PP2B 

Fig. 3. Effects of thermal treatment on adipogenic or osteogenic differentiation of TMSC. TMSC were 
exposed to FIR irradiation or heat (38°C) using the Chamlide heat incubator for 30 min and further 
incubated in differentiation medium for up to 14 days. (A) Accumulation of lipid droplets, (B) protein levels 
of PPARγ, FABP4, and GAPDH, (C) mineralization, and (D) protein levels of osteocalcin, ALP, and GAPDH 
were measured as described in the legend of Fig. 2. The results are representative of three independent 
experiments, and each bar represents the mean ± S.D. Differences were statistically significant at *p<0.05, 
**p<0.01, and ***p<0.001. N.S., not significant.

Fig. 3  
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activity was significantly elevated in FIR-irradiated TMSC (Fig. 5B). To examine whether 
PP2B is also involved in the effect of FIR irradiation on the differentiation of TMSC, we used a 
specific inhibitor of PP2B, CsA. As shown in Fig. 6A, treatment with CsA (up to 0.5 μM) clearly 
reversed the decrease in lipid accumulation 
induced by FIR irradiation. This reversal also 
occurred at a higher dose of CsA (1 μM), but 
without statistical significance. Similarly, 
the inhibitory effect of FIR irradiation on 
PPARγ and FABP4 expression was also 
significantly reversed when TMSC were 
treated with CsA at concentrations up to 0.5 
μM (Fig. 6B) whereas no significant reversal 
occurred in TMSC treated with 1 μM CsA. 
Interestingly, none of the tested doses of CsA 
altered FIR irradiation-stimulated osteogenic 
differentiation with respect to mineralization 
(Fig. 6C) and protein expression of osteocalcin 
and ALP (Fig. 6D). These data suggest 
an important role for PP2B in regulating 
adipogenesis, but not osteogenesis, of TMSC 
induced by FIR irradiation.

Discussion

Previous studies have shown that 
FIR irradiation has therapeutic effects in 
various disease models, including models of 
cardiovascular disease and cancer [30, 31]. 
For the last decade, several types of cells, 
including EC and cancer cells [21, 22], have 

Fig. 5. FIR irradiation increases the activity of Ca2+-mediated PP2B. (A) TMSC were acutely exposed to FIR 
irradiation for 30 min in media containing 1 μM Fluo-4 AM. Images of intracellular Ca2+ were visualized 
using a confocal microscope. Scale bar = 50 μm. (B) TMSC were exposed to FIR irradiation for 30 min. 
PP2B protein was immunoprecipitated using an anti-PP2B antibody and PP2B activity in the precipitates 
was measured using a PP2B cellular activity kit. Each bar represents the mean ± S.D. (n=3). Difference was 
statistically significant at *p<0.05.

Fig. 5 

 

 

 

 

Fig. 4. Expression of TAZ as a modulator of 
MSC differentiation. TMSC were exposed to FIR 
irradiation for 30 min. Protein levels of TAZ and 
GAPDH were measured as described in the legend 
of Fig. 2. The results are representative of three 
independent experiments, and the bar represents 
the mean ± S.D. Difference was statistically 
significant at ***p<0.001.
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been used to examine the molecular and cellular mechanisms underlying the therapeutic 
effects of FIR irradiation. Recent studies have identified stem cells as a potentially good source 
of cells for exploring mechanisms underlying the therapeutic effects of various bioactive 
drugs [32, 33]. Although one recent study showed that FIR irradiation slightly alters basic 
characteristics of murine BM-MSC, such as proliferation and survival [23], there is no study 
exploring the effects of FIR irradiation on differentiation of stem cells. Here, we demonstrate 
that FIR irradiation of TMSC significantly inhibits adipogenesis through a mechanism 
mediated by a Ca2+-dependent PP2B signaling pathway. Furthermore, FIR irradiation also 
induces osteogenesis, but this does not appear to be related to a Ca2+-dependent PP2B 
signaling pathway.

One of the most important findings in this study is that FIR irradiation inhibits 
adipogenic differentiation and promotes osteogenic differentiation of TMSC. There are 
accumulated data showing that several stimuli play a dual role in regulating adipogenic and 
osteogenic differentiation in MSC. For example, hypoxia was reported to inhibit adipogenesis 
and promote osteogenesis of BM-MSC in a hypoxia-inducible factor-1–dependent manner 
[34], which is consistent with our current data. Furthermore, microgravity alters both 
adipogenesis and osteogenesis in rat BM-MSC [35], and interestingly, these effects are dose 
dependent; longer exposure (10 days) to microgravity inhibits adipogenesis and promotes 

Fig. 6. Effects of activation of Ca2+-mediated PP2B on adipogenic or osteogenic differentiation of TMSC. 
(A-B) After pretreatment with CsA (0, 0.25, 0.5, and 1 μM), TMSC were exposed to FIR irradiation for 30 
min and further incubated in adipogenic differentiation medium for up to 14 days. Control cells without 
CsA pretreatment were used as Sham. (A) Accumulation of lipid droplets and (B) protein levels of PPARγ, 
FABP4, and GAPDH were measured as described in the legend of Fig. 2. (C-D) TMSC were pretreated with 
CsA before exposure to FIR irradiation, and further incubated in differentiation medium as described in the 
legend of Fig. 6A with the exception of using osteogenic medium instead of adipogenic medium. Control 
cells without CsA pretreatment were used as Sham. (C) Mineralization and (D) protein levels of osteocalcin, 
ALP, and GAPDH were measured as described in the legend of Fig. 2. The results are representative of three 
independent experiments, and each bar represents the mean ± S.D. Differences were statistically significant 
at *p<0.05, **p<0.01, and ***p<0.001.

Fig. 6 
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osteogenesis whereas shorter exposure (3 days) shows opposite results. Similar to shorter 
exposure to microgravity, repeated exposure to mechanical vibration also promotes 
adipogenesis and inhibits osteogenesis of BM-MSC [36]. Based on our findings that a very 
short exposure time (only 30 min) is sufficient for inhibition of adipogenesis and promotion 
of osteogenesis by FIR irradiation, in contrast to the relatively long exposure times required 
for hypoxia and microgravity to regulate the differentiation of MSC, we suggest that FIR 
irradiation may provide a safer and more effective therapeutic treatment.

Unlike the previous study showing that heat stimulation alone significantly reduces 
the early adipogenesis of 3T3-L1 preadipocytes [37], we found that heat alone did not 
simulate the inhibitory effect of FIR irradiation on adipogenesis of TMSC, suggesting a heat-
independent mechanism of FIR irradiation. At present, the reason for these inconsistent 
results has not been identified, but it may be attributable to the different conditions used: 
we used a 38°C heating system and TMSC whereas the previous study used a >43°C heating 
system and 3T3-L1 preadipocytes. Nonetheless, it is possible that the particular form of 
electromagnetic energy, but not the form of heat energy itself, produced by FIR plays a role 
in inhibiting adipogenesis of TMSC. In this regard, we also reported the heat-independent 
inhibitory effect of FIR irradiation on EC growth and angiogenesis [28]. However, our data 
showed partial heat dependence for FIR irradiation–stimulated osteogenic differentiation 
in TMSC, which reproduces previous data showing that heat stress at 38-40°C promotes 
osteogenesis of dental follicle stem cells [38].

Adipogenic and osteogenic differentiation of MSC are balanced by a transcriptional 
modulator, TAZ. TAZ is a coactivator of Runx2, which regulates osteocalcin expression to 
promote osteogenic differentiation, but simultaneously inhibits adipogenic differentiation 
by directly inhibiting PPARγ-dependent transcriptional events essential for adipogenesis 
[29]. Because our data showed that FIR irradiation inhibited adipogenic differentiation and 
stimulated osteogenic differentiation in TMSC, we predicted that TAZ might be involved in 
the FIR irradiation–induced TMSC differentiation into adipocytes and osteocytes. Previous 
reports showed that a reduced protein level of TAZ promotes adipogenic differentiation and 
inhibits osteogenic differentiation of MSC [39]. Surprisingly, however, FIR irradiation clearly 
decreased, rather than increased, the protein expression of TAZ. Based on this finding, we 
suggest that there is no evidence for involvement of TAZ in the dual effects of FIR irradiation 
on the adipogenic and osteogenic differentiation of TMSC; however, we cannot exclude 
involvement of some factor(s) other than TAZ in the observed effects of FIR irradiation in 
TMSC.

Ca2+ is an important mediator involved in various cellular processes, such as cell growth, 
apoptosis, and differentiation. In particular, intracellular and extracellular Ca2+ concentrations 
have been reported to affect adipogenic or osteogenic differentiation [40-42]. We previously 
reported that FIR irradiation increased intracellular Ca2+ levels in BAEC, mediating increased 
eNOS phosphorylation at serine 1977 and thus increasing NO production [21]. With respect 
to the increased levels of intracellular Ca2+, the current data using TMSC reproduce our 
previous data in BAEC. Using CsA, we further demonstrate that Ca2+-dependent PP2B activity 
mediates the regulatory effect of FIR irradiation on adipogenesis, but not osteogenesis, of 
TMSC. Consistent with our data, a previous study showed that CsA attenuates adipogenesis 
of 3T3-L1 preadipocytes induced by the Ca2+ ionophore ionomycin [26]. Furthermore, the 
authors of this previous study also reported that reversal of adipogenesis by CsA is mediated 
by the suppression of proadipogenic transcription factors (i.e., PPARγ and C/EBPα). Taking 
these findings together, it is clear that PP2B plays an important role in adipogenesis of 
several cells, including TMSC. Interestingly, our study showed that CsA (up to 0.5 μM) clearly 
reversed the inhibitory effect of FIR irradiation on adipogenesis. This reversal was also seen 
at a higher dose (1 μM) although it was not statistically significant. At present, we cannot 
explain why a higher dose of CsA attenuated reversal of the inhibitory effect on adipogenesis 
by FIR irradiation. A previous study reported that treatment with CsA (1 μg/mL) alone had 
no effect on adipogenic differentiation of 3T3-L1 preadipocytes [26], although another study 
reported that a higher dose (10 µg/mL) in itself inhibits the adipogenic differentiation of 
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3T3-L1 preadipocytes [43]. A concentration of 1 μg/mL CsA is equivalent to ~0.8 μM. Based 
on these previous studies, it is likely that under our experimental conditions CsA was an 
inhibitor of PP2B but not an inhibitor of adipogenic differentiation, which further validates 
our conclusion that the inhibitory effect of FIR irradiation on adipogenic differentiation is 
mediated by PP2B activation. Regarding the involvement of PP2B in osteogenic differentiation, 
it was reported that deficiency in PP2B catalytic subunit A exhibited osteoporosis in vivo and 
in vitro [27], suggesting a role for activation of PP2B in promoting osteogenic differentiation. 
However, from our findings, it seems unlikely that the stimulation of osteogenesis by FIR 
irradiation is mediated by PP2B activation. Identifying signaling molecules other than 
PP2B involving in FIR irradiation-induced osteogenic differentiation of TMSC is important 
and needs further investigations. Previously, we reported that Ca2+/calmodulin-dependent 
protein kinase II (CaMKII) plays an important role in promoting osteogenesis of human 
BM-MSC by the peptide with a novel collagen-binding motif derived from osteopontin [44]. 
Consistent with our previous study, a recent study also showed that a constant electric field 
induces osteogenic differentiation of rat BM-MSC on TiO2 nanotubular layer via CaMKII [45]. 
With these findings, together with the previous data showing that FIR irradiation significantly 
activates CaMKII in BAEC [21], it seems likely that CaMKII is a potential candidate protein in 
stimulating osteogenic differentiation of TMSC. Further study is needed to clarify this issue.

Obesity is a medical condition of excessive fat accumulation in adipose tissues. 
Adipocytes, which are of mesodermal origin, are generally known to be derived from stem 
cells and are produced through a series of differentiation processes. Abnormal development 
of MSC into adipocytes leads to hyperplasia of adipocytes, which may cause obesity. 
Although the direct link between MSC and hyperplasia of adipocytes is not known, our study 
suggests that FIR irradiation can be used as a tool to understand its underlying mechanism 
and perhaps to treat obesity. In this regard, FIR sauna therapy was reported to significantly 
reduce body weight and body fat in obese patients [46]. There are also a few findings of 
in vivo beneficial effects of FIR irradiation on bone formation; for example, FIR irradiation 
was reported to promote bone-forming activity of osteoblasts and increase bone mineral 
density when natural FIR ceramics were implanted under the periosteum of rat skull [47]. 
Our current data, together with these previous findings, may extend the potential use of FIR 
therapy in clinical applications to treat obesity and repair bone defects.

Conclusion

We demonstrate that FIR irradiation inhibits adipogenic differentiation and promotes 
osteogenic differentiation of TMSC. Furthermore, the inhibition of adipogenic differentiation 
by FIR irradiation is mediated at least in part by Ca2+-dependent PP2B activation, but the 
stimulation of osteogenesis is unlikely to be PP2B-dependent. Lastly, our findings may 
advance our understanding of the molecular and cellular mechanism by which FIR therapy 
decreases body fat in obese patients and repairs bone defects.
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