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Abstract
Acid sphingomyelinase hydrolyzes sphingomyelin to ceramide and phosphorylcholine. 
Ceramide molecules spontaneously interact with each other and generate ceramide-enriched 
membrane domains. These ceramide-enriched domains further fuse, forming large ceramide-
enriched platforms that participate in the organization of receptors and in the amplification 
of signaling molecules. Recent studies have suggested several bacteria and bacterial toxins 
that stimulate the activation and the translocation of acid sphingomyelinase, which leads 
to the release of ceramide. The acid sphingomyelinase/ceramide system also regulates the 
internalization of bacteria into the host cell, the subsequent cytokine release, inflammatory 
response, and initiation of host cell apoptosis. In addition, ceramide has been implicated in the 
fusion of phagosomes and lysosomes upon bacterial infection. Thus, this system modulates 
the reorganization of cell membrane receptors and intracellular signaling molecules during 
bacteria-host interactions. The acid sphingomyelinase and ceramide system may thus serve as 
a novel therapeutic target for treating infections.

Introduction

Although sphingolipids have long been considered as structural components of 
cell membranes, recent studies have revealed their crucial functions in the regulation 
of physiological and pathological processes. In host-bacteria interactions, sphingolipids 
play an important role in the regulation of the balance between the host and the microbe 
[1, 2]. Sphingomyelin is the most abundant sphingolipid, comprising 2%-15% or even 
higher of the total phospholipid in specific tissues [3]. Sphingomyelin can be hydrolyzed 

Review

Accepted: 10 January 2019

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of 
modified material requires written permission.

DOI: 10.33594/000000021
Published online: 28 February 2019

© 2019 The Author(s)
Published by Cell Physiol Biochem 
Press GmbH&Co. KG, Duesseldorf
www.cellphysiolbiochem.com

Dr. Heike Grassmé
and Dr. Zhigang Zhao

Dept. of Molecular Biology, University of Duisburg-Essen, Essen (Germany); 
Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing (China)
E-Mail heike.grassme@uni-due.de; zzgttyy@163.com

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

https://doi.org/10.33594/000000021


Cell Physiol Biochem 2019;52:280-301
DOI: 10.33594/000000021
Published online: 28 February 2019 281

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Li et al.: Sphingolipids and Infections

by sphingomyelinases, which breakdown the phosphodiester bond to generate ceramide. 
Sphingomyelinases are characterized and identified as acid, neutral and alkaline 
sphingomyelinases based on the optimal pH of their activity. Acid sphingomyelinase 
(abbreviated here uniformly as ASM for the human and murine protein), the most studied of 
these 3 enzymes, is critically involved in many aspects of cell signaling [4]. ASM is characterized 
for its central role in the re-organization of molecules within the cell upon diverse stimuli 
and upon the induction of apoptosis, as well as cellular differentiation, proliferation, tumor 
presentation, cardiovascular disease, and bacterial infections [for review see for instance 
ref. 4].

Antibiotics have long been preferred and effective treatments for bacterial infections. 
However, antibiotic resistance has become a severe threat to global public health. The lack of 
efficacious strategies for treating bacterial infections leads to a worsened clinical outcome, 
including death, and marked financial costs. Thus, it is important and urgent to identify novel 
therapeutic targets to fight against bacterial infections. In this review, we will focus on ASM 
and provide an overview of the regulation and activation of ASM and ASM-generated lipid 
domains in the process of bacterial infections. We will also discuss the regulation of the host 
immune system by ASM.

Acid sphingomyelinase

Acid sphingomyelinase plays an important role in sphingolipid metabolism and is 
responsible for hydrolyzing sphingomyelin to ceramide and phosphorylcholine. The ASM 
gene is 5-6 kb long, localizes to chromosome 11p15.1–11p15.4 and contains six exons 
and five introns [5, 6]. Human ASM cDNA encodes a polypeptide of 629 amino acids [7, 8], 
which shares approximately 82% amino acid identity with murine acid sphingomyelinase 
[9]. ASM consists of three main domains: the N-terminal saposin domain, the proline-rich 
connector, and the catalytic domain [10, 11]. ASM deficiency results in the accumulation of 
sphingomyelin and causes lysosomal storage diseases, i.e., the fatal neuropathic and visceral 
disease Niemann-Pick type A and the visceral anomalies disease Niemann-Pick type B [6, 
12-14].

It was reported that ASM has an optimal pH of 4.5-5.0 for activity [15], however, the 
ASM also catalyzes the hydrolysis of LDL-sphingomyelin on the plasma membrane at a 
higher, or almost neutral, pH [16, 17]. The single ASM gene generates two distinct enzymes: 
a lysosomal form of ASM (L-ASM) and a secretory form of ASM (S-ASM). The generation 
of two forms of ASM results from alternative modification and trafficking. The mutation 
of N-glycosylation sites affects the catalytic activities and intracellular processes of L-ASM 
and S-ASM [18]. Previous studies have shown that the mannose-6-phosphorylation (M6P) 
receptor system mediates lysosomal trafficking of ASM [19, 20]. Additional studies have 
been reported indicating that the trans-Golgi network (TGN) transmembrane protein 
sortilin plays a critical role in L-ASM trafficking along a Golgi-dependent route [19, 21, 22]. 
The pre-pro-form of ASM with a 75 kDa (65 kDa protein core) molecular weight enters the 
Golgi, thereby generating the pro-form of ASM with a 72-75 kDa (63-64 kDa protein core) 
[23]. L-ASM translocates to the lysosome as a 57 kDa (43 kDa protein core) [24] or a 65 kDa 
(55 kDa protein core) enzyme [24-26]. The activation of S-ASM is dependent on exogenous 
Zn2+, whereas L-ASM binds to Zn2+ ions on its way to lysosomal compartments, resulting in 
the independence of exogenous Zn2+ [17]. Although several groups have studied the ASM, 
only a few studies have discussed the precise molecular mechanism in the regulation of the 
lysosomal and secretory forms of ASM.

Various stimulations can regulate the activation of ASM, i.e., reactive oxygen species 
(ROS), proteases, death receptors, irradiation, phosphorylation, and pathogen infections. 
For example, hydrogen peroxide induces an activation of ASM in different cells [27-29]. In 
accordance, inhibition of ROS by several ROS scavengers such as TIRON, N-acetylcysteine 
(NAC), superoxide dismutase (SOD), catalase or the nicotinamide adenine dinucleotide 
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phosphate (NADPH)-oxidase inhibitor diphenyleneiodonium chloride (DPI) blocked the 
activation of ASM induced by different stimulations [29-33]. Genetic silencing of NADPH 
oxidase subunit gp91phox also inhibited ASM activation [34]. In vitro studies indicated that 
the direct oxidation of ASM at the C-terminal cysteine residue 629 results in activation of 
enzymes [35]. These findings indicate that ROS is required for the activation of ASM, although 
it remains unclear whether ROS regulates the enzyme activity directly or indirectly [4, 36].

ASM-generated ceramide formation

Ceramide is commonly considered as the backbone of sphingolipids, which are one of 
the main components of the plasma membrane. Ceramide can be generated from several 
pathways, including the hydrolysis of sphingomyelin by sphingomyelinase, de novo synthesis, 
the salvage pathway and the hydrolysis of complex glycosylated lipids [37]. There are more 
than 28 distinct enzymes regulating ceramide metabolism as a substrate or product [38-44].

Ceramide is composed of a D-erythro-sphingosine backbone and fatty acid-containing 
acyl chains of different lengths connected via an amide ester bond [45, 46]. It contains a 
hydroxyl functional group, an amide linkage and an OH group on a sphingosine backbone, 
which forms hydrogen bonds. The hydrophilic hydrogen bonds and hydrophobic moieties 
result in the spontaneous separation of ceramides from other phospholipids and the 
formation of distinct micro lipid domains [47, 48]. Upon activation of ASM, ceramide 
molecules generated from sphingomyelin spontaneously interact with each other, forming 
small ceramide-enriched membrane domains. These small ceramide-enriched domains 
function in signaling transduction and can further fuse to large ceramide-enriched domains, 
termed platforms [49-51].

The generation of ceramide by ASM alters the physiological properties of the biological 
membranes. The ceramide-enriched platforms re-organize receptors and signaling molecules 
upon various stimulations. The formation of ceramide-enriched domains can be visualized 
by fluorescence staining [47, 48]. Ceramide-enriched platforms occur in cells upon diverse 
receptor or non-receptor stimuli, including CD95 [52-55], FcγRII [56], DR5 [33], CD40 [57], 
platelet-activating factor receptor (PAF) [58], viral infection [59-61], N. gonorrhoeae [62], 
S. aureus [31], P. aeruginosa [29, 63]; pyocyanin [27], cisplatin [64], Cu2+ [32], irradiation 
[65], and UV-light [66, 67]. CD95 and DR5 belong to the family of death receptors and induce 
programmed cell death, i.e. apoptosis. PAF receptor present in platelets, but also in other 
cells of the cardiovascular system, such as endothelial cell, that plays an important role in 
coagulation, endothelial dysfunction and shock. FcγRII. CD40 are receptors that are present 
in immune cells, mainly B-lymphocytes, and serve as important co-receptors. Pyocyanin is 
produced by P. aeruginosa and functions as a toxin that regulates redox sensitive targets 
in mammalian cells. Cisplatin is a commonly used chemotherapeutic drug. The interaction 
of ceramide-enriched platforms with CD95 is one of the best-studied stimulations. CD95 
induces the activation and translocation of ASM onto the outer leaflet of the plasma 
membrane, thus generating ceramide [52, 54]. Ceramide generation and aggregation forms 
a ceramide-enriched membrane platform, which results in the clustering of CD95 within a 
confined area of the membrane and amplification of CD95 signaling [52-54]. The disruption 
of these ceramide-enriched membrane domains abolishes CD95 assembly with downstream 
signaling molecules [68].

ASM in bacterial infections

Various studies have shown that the ASM/ceramide system plays a critical role in a 
wide range of cellular processes, such as cell death, proliferation, growth and differentiation 
[32, 69-71]. Alterations in the ASM/ceramide system are involved in several physiological 
and pathological processes, such as genetic diseases [72, 73], tumor development [74, 
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75], neurogenesis, neuronal integrity and behavior [76-79], atherosclerosis [80, 81], and 
infections with pathogens [31, 59-62]. Particularly, the interaction of bacterial infections and 
the ASM/ceramide system has emerged as a novel research direction. The studies related to 
ASM/ceramide and bacteria as well as bacteria-generated toxins are listed in Table 1.

Pseudomonas aeruginosa (P. aeruginosa)

P. aeruginosa is the most studied bacterium among all pathogens interacting with ASM. 
P. aeruginosa is a gram-negative bacterium commonly affecting immune-compromised 
patients and patients with cystic fibrosis, chronic wounds, sepsis, or chronic emphysema [82, 
83]. Epidemiology studies have reported the high prevalence of P. aeruginosa with morbidity 
and mortality in chronic lung infections. Patients with cystic fibrosis have a particularly risk 
for chronic P. aeruginosa infections.

The infection of mammalian cells with different strains of P. aeruginosa induces the rapid 
activation of ASM, particularly, the translocation of ASM from intracellular compartments 
to the extracellular leaflet of the plasma membrane, where the ASM colocalizes with P. 
aeruginosa at the infection site [63]. Other studies have confirmed the activation of ASM 
and the generation of ceramide triggered by P. aeruginosa in various cells as well as mice 
[29]. P. aeruginosa activation results in generation of ceramide-enriched microdomains that 
spontaneously form ceramide-enriched platforms and that initiate lipid raft reorganization. 
These ceramide-rich rafts are essential for the internalization of P. aeruginosa into mammalian 
cells, which is prevented by the disruption of these rafts via pharmacological inhibitors of 
the ASM or by ASM-deficiency. This effect is consistent with the finding that clustering of 
cystic fibrosis conductance regulator (CFTR) in ceramide-enriched domains correlates 
with internalization of P. aeruginosa into respiratory epithelial cells [63, 84]. Currently, the 
mechanisms how ceramide-enriched platforms regulate these signaling events are unknown.

ASM and the ceramide system in P. aeruginosa infection are also critically involved in 
cell apoptosis. ASM deficiency results in the failure of the formation of ceramide-enriched 
membrane platforms, which correlates with a lack of apoptosis in vitro and in vivo [63]. The 
exogenous addition of recombinant ceramide is sufficient to restore apoptosis in ASM-deficient 
epithelial cells. Ceramide is involved in either extrinsic (by stimulation of receptors for 
proteins from the TNF-α and CD95/Fas families) or intrinsic (mitochondria and ER metabolic 
stress mediated apoptosis) 
apoptotic pathways, which 
have been reviewed in detail 
[85, 86]. CD95 receptor 
molecules are concentrated 
in ceramide-enriched 
membrane platforms and 
likely induce cell apoptosis 
upon P. aeruginosa infection 
[63]. Another potential 
mechanism underlying ASM-
mediated P. aeruginosa-
induced cell death may be 
the amplification of redox 
signaling [29]. In freshly 
isolated macrophages, ASM 
is required for the activation 
of nicotinamide adenine 
dinucleotide phosphate 
(NADPH) oxidase and for the 
release of reactive oxygen 

Table 1. ASM/ceramide system in bacterial infection

 1 

Pseudomonas aeruginosa 
 
 
 
 
 
 
Staphylococcus aureus 
 
 

 
 
Listeria monocytogenes 
 
Neisseria gonorrhoeae 
 
Neisseria meningitidis 
Escherichia coli 
 
Salmonella enterica 
Propionibacterium acnes 

α and MIP

α α
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species (ROS), thereby activating c-Jun N-terminal kinase (JNK) triggered apoptosis. Two 
subunits of NADPH oxidase p47phox and gp91phox are required for ASM-regulated apoptosis in 
mammalian cells [29, 87].

In addition, ceramide is accumulated in the lungs of CFTR-deficient mice prior to any 
infection and is normalized by the heterozygosity of ASM. Increased ceramide concentrations 
mediate clustering of CD95 in the plasma membrane and apoptosis of lung epithelial cells 
[52, 55, 88].

Deficiency or dysfunction of ASM plays a role in the release of cytokines in response to P. 
aeruginosa challenge. P. aeruginosa infection leads to an uncontrolled release of IL-1β from 
infected cells or from the lungs of ASM-deficient cells [63], whereas the addition of exogenous 
ceramide is sufficient to rescue the phenotype of ASM-deficient epithelial cells. Blocking ASM 
with multiple approaches, i.e., silencing, pharmacological inhibitors, or specific antibodies, 
significantly increased IL-8 release upon P. aeruginosa infection in epithelial cells [89]. On 
the other hand, apoptosis mediated through the ASM/ceramide system may physically 
limit the control of cytokine release [63]. This system might also influence cytokine release 
through regulating the synthesis or through interfering with gene transcription or protein 
expression of cytokines.

The ASM/ceramide system is essential for host defenses against P. aeruginosa infection. 
Mice with genetic ASM deficiency fail to clear P. aeruginosa pulmonary infections, and 90% of 
these animals died in 7 days [63]. Death might be caused by an over-activation of the immune 
system, since intravenous injection of neutralizing antibody against IL-1β successfully 
rescued ASM-deficient mice from lethal pneumonia caused by P. aeruginosa. Consistently, 
the decrease or absence of endogenous IL-1 activity suppresses pulmonary inflammatory 
responses, thereby improving the host defense against P. aeruginosa infection in the lungs 
[90]. The regulation of ROS production by the ASM/ceramide system is another mechanism 
involving bacteria killing [29]. NADPH oxidase is required for host defenses against invading 
pathogens because ROS are toxic to most bacteria. The deficiency of ASM and the absence of 
ceramide-enriched platforms abolish ROS production via NADPH oxidase in freshly isolated 
alveolar macrophages upon P. aeruginosa infection. Previous studies have indicated that 
JNK functions between NADPH oxidase-derived ROS production and apoptotic cell death 
in P. aeruginosa infection in phagocytes, which is consistent with recent studies [91]. ROS 
production is importantly involved in the redox regulation of host responses against P. 
aeruginosa, but this pathogen can actively block the ROS burst via the PI3K pathway using 
the two type III secreted effector proteins, ExoS and ExoT [92]. Particularly, ExoS interferes 
with the signaling cascade that mediates NADPH oxidase assembly by ADP-ribosylating Ras. 
Most of the events described in the internalization and elimination of intracellular bacteria 
require expression of the type III secretion system in P. aeruginosa [93, 94]. Notably, it is 
unknown whether ceramide-enriched membrane platforms play a role in the transfer of 
bacterial proteins and delivery of bacterial cells into mammalian host cells via the type III 
secretion system.

The cleavage of the fatty acid moiety from ceramide by ceramidase produces 
sphingosine, a bioactive lipid that plays a prominent role in the pulmonary defense against P. 
aeruginosa. In both humans and mice with cystic fibrosis, an increase in ceramide and in the 
formation of ceramide platforms leads to an ectopic trapping and clustering of β1-integrins 
on the luminal pole of bronchial epithelial cells [95]. β1-integrin impairs the acid ceramidase 
(aCDase) activity and expression, consequently resulting in the accumulation of ceramide 
and the decrease in surface sphingosine. Reducing ASM activity with ASM pharmacological 
inhibitors amitriptyline or fluoxetine normalizes ceramide and sphingosine levels and β1-
integrin expression and prevents P. aeruginosa infection in CF mice. Sphingosine is abundantly 
expressed on the luminal surface of human nasal epithelial cells in healthy individuals and 
in the trachea of mice, but is almost undetectable in CF patients and in Cftr-deficient mice. 
In contrast, ceramide levels are elevated in CF mice. Inhalation of sphingosine eliminates 
existing P. aeruginosa infections and clears P. aeruginosa or S. aureus infections in CF mice [96, 
97], whereas the pharmacologic or genetic normalization of ceramide prevents P. aeruginosa 
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infection in CF mice [30, 70, 98-100]. In healthy cells, the ratio of ceramide to sphingosine is 
relatively stable and balanced. However, if this balance is disrupted as in CF, cells are highly 
susceptible to bacterial infections. Ceramide elevation induces acid ceramidase dysfunction 
and reduces sphingosine, integrin accumulation, and CD95 activation and eventually reduces 
uncontrolled inflammation (Fig. 1). This balance has been further demonstrated in S. aureus; 
the ASM/ceramide/acid ceramidase/sphingosine system in CF lungs and the correction of 
ceramide and sphingosine levels in bronchial epithelial cells prevent pulmonary infection 
[101].

Pyocyanin is a redox-active compound produced by P. aeruginosa, which easily accepts 
and donates electrons and crosses biological membranes, acting as a mobile electron carrier 
for P. aeruginosa [102]. The pyocyanin-induced rapid death of neutrophils depends on ASM, 
a novel mechanism for the activation of mitochondrial ASM in the generation of ROS in 
mitochondria [27]. Whether pyocyanin induces a change in mitochondrial membrane lipids 
has not yet been determined.

Currently, the function and regulation of mitochondrial ASM has not been extensively 
studied, although studies clearly showed mitochondrial expression of the enzyme, its 
association with pro-caspase 3-induced apoptosis [103] or the glutamate-induced regulation 
of necrosis [104]. In addition, ASM regulates the lipid composition of membranes.

Staphylococcus aureus (S. aureus)

S. aureus is a commensal opportunistic bacterium that colonizes approximately 30% 
of human populations. This bacterium frequently causes diseases from mild skin and soft 
tissue infections to life-threatening diseases, such as pneumonia, endocarditis, sepsis, and 
toxic shock syndrome [105]. The methicillin-resistant S. aureus (MRSA) has become a major 
pathogen and critical problem in both community and hospitals worldwide, particularly 
resulting from the lack of effective therapeutic approaches to control multiple antibiotic-
resistant S. aureus infection [106].

In 2001, a study showed that S. aureus infection triggers ASM activation and ceramide 
production in human endothelial cells [107]. Genetic deficiency of ASM significantly inhibits 
the death of human fibroblasts triggered by S. aureus, which is mediated by stimulation of 
the JNK signaling pathway as well as alterations in mitochondrial function. The functional 
inhibition of JNK by Tam67 gene transfection prevents S. aureus-induced cell apoptosis. 
These results are consistent with the finding that ASM and ceramide-enriched platforms 
mediate macrophage apoptosis via the stimulation of JNK upon P. aeruginosa infection [29]. 
The endothelial cell death mediated by the ASM/ceramide system may cause the degradation 
of tight junction proteins and the breakdown of the endothelial cell barrier, enabling the 

Fig. 1. Disruption of ceramide-
sphingosine balance in cystic 
fibrosis. In healthy cells and 
in individuals, a low ceramide 
and high sphingosine level 
maintains a balance. In contrast, 
abnormally high ceramide and 
low sphingosine levels activate 
several signaling pathways, such 
as integrin accumulation, CD95 
activation, and proinflammatory 
and anti-inflammatory cytokines, 
in the airways of cystic fibrosis 
patients or cells.  
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bacterium to infect other tissues or organs. In cystic fibrosis airways, the accumulation of 
ceramide results in the membrane recruitment of inflammasome proteins and the activation 
of caspase 1 as well as the phosphorylation of JNK [108].

A recent study showed that genetic deficiency or pharmacological inhibition of ASM 
protects mice against pneumonia and lethal S. aureus sepsis [31]. ASM is activated by S. 
aureus in endothelial cells; subsequently, ceramide-enriched platforms are generated. 
ASM activation triggers the release of superoxide, whereas ASM activation is inhibited by 
antioxidants. The ASM/ceramide system and ROS act as a positive feedback loop mechanism 
upon S. aureus infection, which is similar to the findings of previous studies [29]. Another 
mechanism in S. aureus activated ASM involves CD44, a glycoprotein that interacts with 
Ezrin/Radixin/Moesin (ERM) and links the actin cytoskeleton to the plasma membrane 
and extracellular matrix [109]. Macrophages are activated via CD44 upon infection with S. 
aureus, thereby stimulating the activation of ASM and the release of ceramide. In addition, 
ASM/ceramide-triggered superoxide production induces the degradation of tight junction 
proteins ZO1, ZO2, occludin and E-cadherin upon S. aureus infection in vitro or in vivo, 
an effect that was ameliorated by the inhibition of ASM via amitriptyline or antioxidants. 
Several studies have demonstrated that superoxide is responsible for the degradation of 
tight junctions via proteolytic matrix metalloproteinases (MMP) [110-112]. Moreover, ASM 
was shown to positively regulate the mRNA transcription and protein expression of MMP 
[113-115].

S. aureus is the primary cause of sepsis and lethal lung edema, even with the clinical 
administration of antibiotics. Mice treated with the ASM inhibitor amitriptyline or lacking 
ASM expression show reduced lung edema, because degradation of tight junctions was 
decreased and thereby myeloid cell trafficking was inhibited [31]. However, on the other 
hand the bactericidal capacity is also reduced since ASM dysfunction leads to the failure of 
clustering and activation of NADPH oxidase, resulting in the susceptibility and high mortality 
of mice to S. aureus infection. ASM inhibition was achieved using functional inhibitors, such 
as imipramine, desipramine and amitriptyline, which displace the ASM from the lysosomal 
membrane resulting in degradation of the enzyme and, thus, a functional inhibition [4, 79]. 
Functional ASM inhibitors also improve endothelial stresses response during sepsis [116]. 
The activity and expression of plasma ASM increased depending on the severity of sepsis 
in patients. Freshly isolated serum from patients with sepsis instantaneously induces the 
breakdown of sphingomyelin and the elevation of ceramide in endothelial cells, an effect that 
is abrogated by desipramine. The inhibition of ASM by pre-incubation with desipramine or 
NB6 blocks the clustering of receptor complexes, such as the CD95L/Fas-receptor, as well as 
the formation of ceramide-enriched microdomains.

The precise mechanism of ASM activation upon S. aureus infection is far from understood; 
extended studies have demonstrated that Staphylococcal alpha-toxin (α-toxin) is one of the 
factors mediating the activation of ASM and leading to detrimental effects of the pathogen on 
endothelial cells [117]. The α-toxins, a class of β-barrel pore-forming cytotoxins, are major 
host injurious toxins secreted by S. aureus, and these molecules function by forming pores 
in cell membranes, damaging membrane permeability, and eventually triggering cell death 
[118-120]. ASM is rapidly activated by the wild-type S. aureus strain as well as by purified 
α-toxins, whereas the α-toxin-deficient JE2-∆hla mutant strain has no effect on ASM activity. 
Pre-incubation with the ADAM10 inhibitor GI254023X or β-cyclodextrin, which blocks toxins 
by binding to toxin heptamers, markedly decreases ASM activation upon cellular stimulation 
with α-toxin. S. aureus α-toxin induces the degradation of tight junctions in endothelial cells, 
which is abrogated by the inhibition of ASM or ADAM10. Furthermore, while infection with S. 
aureus JE2 results in severe pneumonia in CF mice, the deletion of α-toxin by β-cyclodextrin 
reduces the pathogenicity of S. aureus. Also, the inhibition of ceramide generation by the 
application of amitriptyline is beneficial to prevent infection [101]. These studies reveal a 
central role for α-toxin and ASM in S. aureus infection. Another study from the same group 
demonstrates a novel signaling pathway, in which α-toxin activates ASM and triggers the 
formation of ceramide in lysosomes of macrophages [121]. Activation of the ASM/ceramide 
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system in macrophages induces the 
release of cathepsin B from lysosomes 
into the cytoplasm, associated with Nlrc4 
and Asc, as well as eventual activation 
of the inflammasome and release of IL-
1β. These studies connect the lysosomal 
ASM/ceramide system with the regulation 
of inflammation, which is central for the 
control of infections and the immune 
system.

Further studies reveal, that 
the ASM/ceramide system protects 
against staphylococcal α-toxin-induced 
keratinocyte death [71, 122].

S. aureus is one of the major causes for 
the pathogenesis of sepsis, and although a 
series of appropriate antibiotics are used 
to clear the bacteria burden, many patients 
still die from fatal lung edema [123-125]. 
A combination of antibiotics with genetic 
ASM deficiency or pharmacological 
inhibition of the ASM successfully rescues 
mice from the lethality of S. aureus 
infection. This combination is sufficient 
to clear the bacteria and to prevent 
tight junction protein degradation on 
endothelial cell layers, as well as it 
prevents an uncontrolled over-activation 
of inflammation, which is harmful to 
the host immune system. A potential 
mechanism of the ASM/ceramide system 
in combination with antibiotics against 
S. aureus infection is shown in Fig. 2. 
Amitriptyline, a drug routinely used to 
treat major depression, in combination 
with the appropriate antibiotics, might 
be a novel therapeutic target to treat 
systemic S. aureus and most notably MRSA infections.

Pathogenic mycobacteria

Pathogenic mycobacteria, including Mycobacterium marinum (M. marinum), 
Mycobacterium tuberculosis (M. tuberculosis), and Mycobacterium avium (M. avium), 
often cause several diseases in humans, such as skin lesion, respiratory illness, fever, and 
tuberculosis [126, 127]. Among these diseases, tuberculosis is a main health problem, having 
caused 1-5 million deaths in 2014 [128]. The host fights against pathogenic mycobacteria 
involve both innate and adaptive immune systems, which often wall off the pathogen 
enclosed in granuloma. Pathogenic mycobacteria survive and replicate in host immune cells, 
particularly macrophages. These pathogens prevent phagosome-lysosome fusion and evade 
killing, thereby persisting in the host cells.

ASM interact with the proneurotrophin receptor sortilin, which is required for the 
infection of M. tuberculosis in macrophages [21]. Sortilin mediates ASM trafficking from 
the Golgi complex into mycobacteria-containing phagosomes. Once delivered to the 

Fig. 2. Interaction of S. aureus with the ASM/
ceramide system. 1. Antibiotics are often insufficient 
to cure severe S. aureus, respectively MRSA infection. 
A-toxin induces the activation of ASM and the release 
of ceramide via ADAM10, which is linked to the 
degradation of tight junctions (right cell). However, the 
α-toxin-activated ASM/ceramide system also mediates 
the trafficking of cathepsins from lysosomes to the 
cytoplasm, followed by the formation of the Nlrc4/
ASC complex and the production of inflammatory 
cytokines. The functional ASM inhibitor amitriptyline 
(AMI) can prevent tight junction degradation and 
cytokine release. A combination of ASM inhibitors with 
antibiotics provides a novel approach to treat S. aureus 
and MRSA infection.
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phagosome, ASM localizes with lysosomal-associated membrane protein (LAMP) 2 for the 
growth restriction and elimination of M. tuberculosis in bone marrow-derived macrophages. 
Moreover, depleting ASM with the pharmacological inhibitor desipramine increases the 
survival of M. tuberculosis [21]. Furthermore, ASM hydrolyzes sphingomyelin to ceramide, 
which is involved in the regulation of phagosome maturation, the fusion of phagosomes and 
lysosomes and mycobacterial killing [129-131]..

ASM deficiency protects mice against M. avium infection through a cell-cell fusion 
mechanism [132]. Interestingly, this effect is controversial with many studies showing that 
ASM deficiency confers susceptibility to bacterial infection in vitro and in vivo. In a recent 
study [132], after intravenous infection with M. avium, ASM-deficient mice survived 120 
days, while the wild-type mice died between 70 and 80 days. The histology results revealed 
that, in ASM-deficient mice M. avium was found within minor and restricted granulomas. In 
contrast, wild-type mice have large granulomas with massive mycobacteria. Multinucleated 
giant cells containing an overload of bacteria were formed in wild-type, but not in ASM-
deficient mice. ASM modulates the formation of giant cells, which provide an environment for 
M. avium survival and replication. The authors indicate a mechanism in which extracellular 
surface ASM changes the biophysical properties of the plasma membrane, therefore affecting 
the fusogenicity of macrophages with granulomas.

The ASM/ceramide system contributes to macrophage necrosis upon M. marinum 
infection [133]. Tumor necrosis factor (TNF) excessively triggers ROS generation-induced 
cell necrosis in macrophages infected with M. marinum, while this necrosis is prevented by 
the knockdown of ASM or by the long-term clinical use of desipramine, which inactivates 
ASM. The blocking of necrosis resulting from ceramide reduction is reproduced by the 
overexpression of acid ceramidase. However, the precise mechanism how the ASM/
ceramide system mediates macrophage necrosis is poorly known. The combination of gene 
knockdown of ASM and Cyclophilin D (CYPD), a mitochondrial matrix protein and component 
of the permeability transition pore, synergistically prevents the cell death of macrophages, 
prolongs bacterial clearance, significantly reduces bacterial burden, and consequently 
reverses susceptibility to M. marinum infection [133, 134]. In another scenario, the infection 
of macrophages with M. tuberculosis induces cell necrosis via lysosomal membrane 
permeabilization and via the release of lysosomal sphingomyelinase [135]. After infection, 
the release of hydrolases results in a 10-fold decrease in the sphingomyelin concentration. 
Thus, these findings suggest that the ASM/ceramide system mediates the bioprocess of 
mycobacterial infection and the survival of host cells.

Listeria monocytogenes (L. monocytogenes)

L. monocytogenes-induced listeriosis is a severe disease, particularly for specific 
populations, such as the elderly, newborns, pregnant women, and immunocompromised 
patients. Innate immunity is also responsible for bactericidal activity against L. monocytogenes. 
Several studies have reported macrophage phagocytosis of L. monocytogenes and neutrophil 
infiltration of tissues and organs, which contribute to the clearance of the pathogen [136, 
137]. However, after internalization into host cells, the pore-forming toxin listeriolysin O 
secreted from L. monocytogenes mediates lysis of the phagosomal membrane and bacterial 
escape into the cytoplasm, thereby causing replication in the cell [138, 139].

ASM-deficiency highly impairs the bactericidal capacity of mice challenged with L. 
monocytogenes due to the failure of macrophage intracellular bacteria killing [140]. The 
LD50 of ASM-deficient mice is lower than 102 colony forming units (CFU), while the LD50 
of wild-type is approximately 104 CFU upon i.p. infection with L. monocytogenes. ASM-
deficiency induces a high bacterial load and a massive necrotic decay of the liver. The 
uptake of L. monocytogenes by macrophages is independent of ASM; however, ASM-deficient 
macrophages are unable to clear the bacteria or to restrict the replication of bacteria at later 
time points due to a lack of efficient phago-lysosomal fusion [129]. Instead, L. monocytogenes 
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rapidly escape from the phagosome into the cytosol in ASM-deficient macrophages. ASM-
deficiency reduces co-localization of intracellular L. monocytogenes with the late endosome/
lysosome marker Lamp1 and the listericidal proteases cathepsin D, B and L [129], while 
in wild-type cells ASM-generated ceramide targets and enhances the activation of the 
lysosomal cathepsin D [141]. Interestingly ASM does not interfere with the production of 
reactive oxygen intermediates upon L. monocytogenes infection, indicating that the oxidative 
listericidal pathway is not impaired in ASM-deficiency [129, 140].

Pathogenic Neisseria

Pathogenic Neisseria, including Neisseria meningitidis (N. meningitidis) and Neisseria 
gonorrhoeae (N. gonorrhoeae), are gram-negative pathogens often recognized as commensal 
bacteria on human mucosal surfaces. Previous studies have demonstrated that Neisseria 
species employs multiple strategies to interact with various host cell receptors during the 
bioprocess of infection. A phase-variable outer membrane protein called opacity-associated 
(Opa) proteins, encoded by 4 genes in N. meningitidis and 11 genes in N. gonorrhoeae, 
facilitates their survival in hosts. Opa proteins interact with cellular receptors to generate 
a tight connection between bacteria and host cells, thus mediating bacterial invasion [142, 
143].

In 1997, a study showed that ASM mediates the invasion of N. gonorrhoeae in non-
phagocytic cells [62]. ASM is activated by N. gonorrhoeae in both epithelial cells and 
fibroblasts. Pharmacological inhibition of ASM by imipramine prevented the invasion of N. 
gonorrhoeae. Moreover, ASM-deficient Niemann–Pick disease type A (NPDA) cells showed 
reduced internalization, which is restored by the reconstitution of the enzyme.

Additional studies from the same group by using human phagocytic cells suggest that 
the ASM/ceramide system is critical for the invasion of N. gonorrhoeae via carcinoembryonic 
antigen-related cellular adhesion molecule (CEACAM) receptors [144]. Only the infection 
of N. gonorrhoeae-expressing virulent Opa proteins 35 and 55 leads to the activation 
of ASM. Pharmacological inhibition results in the reduction of bacterial internalization, 
whereas reconstitution of C16-ceramide completely restores bacterial internalization. The 
ASM inhibitor imipramine abolished the pronounced induction of JNK activity and Src-like 
tyrosine kinases during infection.

An additional study indicated that the ASM/ceramide system determines the 
internalization of Opc-expressing N. meningitidis into endothelial cells [145]. The integral 
outer membrane protein Opc is expressed by various virulent N. meningitidis lineages and 
mediates the adhesion and invasion of a wide range of host cells. Infection of N. meningitidis 
rapidly triggers activation of ASM and induces the formation of extracellular ceramide-
enriched platforms to which the bacteria adhere. The regulation of ASM upon N. meningitidis 
infection [145] is induced by the PC-PLC-mediated release of DAG, which is also observed in 
the related species N. gonorrhoeae [62]. ASM pharmacological inhibition, gene knockdown, 
or gene deficiency reduces the invasion of bacteria but does not affect the adhesion of human 
endothelial cells. Furthermore, the infection of different strains of N. meningitidis with or 
without Opc gene expression into endothelial cells demonstrates that Opc protein enhances 
the bacterial invasion driven by the ASM/ceramide system. The formation of ceramide-
enriched platforms upon N. meningitidis exposure mediates the recruiting and clustering of 
tyrosine kinase ErbB2 to the bacterial sites on host cells.

Taken together, these findings suggest that ASM and ceramide play a central role in the 
regulation of host receptor interactions with Opa or Opc proteins in the infection of human 
cells with pathogenic Neisseria.



Cell Physiol Biochem 2019;52:280-301
DOI: 10.33594/000000021
Published online: 28 February 2019 290

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Li et al.: Sphingolipids and Infections

Escherichia coli (E. coli)

Although most E. coli are harmless and are important members of the healthy human 
intestine, pathogenic strains consists of diverse subtypes, including diarrheagenic E. coli and 
extraintestinal E. coli, which can cause diseases, including diarrhea, urinary tract infections, 
meningitis, pneumonia, and septicemia. E. coli disrupts host biophysical processes with 
bacteria effectors and toxins in various strategies, such as modifying host cell apoptosis, 
altering the actin cytoskeleton, regulating autophagy process, and targeting the multiple 
kinase signal transduction [146].

The ASM/ceramide system is necessary for cellular apoptosis in dendritic cells (DCs) 
during the course of E. coli infection [147]. The infection of human monocyte-derived 
immature DCs with a high numbers of E. coli results in cell apoptosis, which is inhibited 
by pharmacological inhibitor, either imipramine or D609. Importantly, the exogenous 
reconstitution of ceramide reverses these inhibitory effects. Compared with mature DCs, 
immature DCs express a significantly higher level of ASM, resulting in cell death in response 
to infection. Nitric oxide (NO) is a free radical and is one of the most versatile factors 
mediating various bioprocesses in the immune response [148], including the targeting of 
ASM [149]. ASM activation and immature DCs apoptosis induced by E. coli is inhibited by 
DETA-NO, constantly releasing NO. This mechanism of apoptosis inhibition by NO involves 
the activation of guanylate cyclase, the formation of cyclic guanosine monophosphate (cGMP), 
and the activation of G kinase. Taken together, the activation of ASM and the generation of 
ceramide as well as their exposure to NO depends on cGMP formation during the E. coli 
infection process.

Notably, recent studies have shown that the activation of ASM by platelet-activating 
factor-receptor (PAF-R) generates the formation of a ceramide-enriched-platform inside 
of a signalosome complex, including eNOS, producing NO in endothelial cells. Moreover, 
mechanically, the platform mediates the phosphorylation/dephosphorylation of the serine, 
threonine, and tyrosine residues of eNOS [150]. Further studies indicate that the inhibition of 
ASM decreases NO production in a NF-κB-regulated manner and that the exogenous addition 
of ceramide induces the biogenesis of inducible NO synthase (iNOS) and apoptosis [151].

Salmonella enterica serovar Typhimurium

S. enterica is a rod-shaped gram-negative bacterium causing a series of infectious 
illnesses from localized gastroenteritis to systemic severe typhoid fever, which is a global 
health problem [152]. S. enterica serovar Typhimurium (S. typhimurium) is one of the most-
studied types that specifically infects humans, although the mechanism of its selectivity 
remains unknown [153]. As a facultative intracellular pathogen, S. typhimurium promotes its 
invasion into host cells residing in a distinct membrane bound compartment, the Salmonella-
containing vacuole (SCV). Additionally, effector proteins of this bacterium can interfere with 
immune cell functions, can block the activation of the immune response and can evade the 
bactericidal effect.

Studies have shown that the genetic deficiency of ASM dramatically enhances the 
susceptibility of mice to the facultative intracellular bacterium S. typhimurium but not to the 
extracellular bacterium S. aureus, suggesting that ASM is involved in host defenses against 
intracellular pathogens [140]. Subsequent studies have also shown a key role for ASM in 
the killing of S. typhimurium in macrophages [154]. The reduction of bacteria killing in 
macrophages is dependent on ASM. This study also showed that the activation of ASM in 
S. typhimurium elimination is linked to NADPH-mediated ROS release, consistent with the 
studies of ASM regulating host defense against Pseudomonas [29]. The supernatant of infected 
macrophage contained a significantly increased ASM enzymatic activity compared with the 
uninfected group, which indicates that S. typhimurium infection leads to the redistribution 
of ASM from the cytosol to the cell membrane or to the extracellular environment. This 
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trafficking of ASM does not only exist in S. typhimurium, as E. coli induces a similar effect. 
According to the extracellular translocation of ASM in response to different bacteria species, 
the trafficking of ASM may be required for bactericidal activity against various types of 
pathogenic bacteria.

Propionibacterium acnes (P. acnes)

P. acnes, an opportunistic pathogen, is critically associated with the pathogenesis of acne 
vulgaris, which is the most prevalent skin disease, persisting by up to 85% among individuals 
12-24 years old [155, 156]. The P. acnes genome encodes the Christie-Atkins-Munch-Petersen 
(CAMP) factor, which binds to immunoglobulins G and M and acts as a pore-forming toxin. In 
addition, P. acnes induces the release of inflammatory cytokines involved in the activation of 
Toll-like receptor 4 (TLR-4), thereby manipulating the host immune response. The invasive 
and chronic implant infections are closely related to the biofilm formation of P. acnes [157].

 ASM is involved in P. acnes virulence-induced inflammation [158]. The co-culture of 
P. acnes with HaCaT keratinocytes and RAW264.7 macrophages stimulates the secretion of 
ASM into the culture supernatant. P. acnes induces cell death in host cells, which is blocked 
by addition of the ASM inhibitor desipramine in vitro. Intradermal injection of ICR mice with 
bacteria significantly increases ASM expression. Host ASM is responsible for recruiting of 
CD11b+ macrophages. Importantly, the combination of CAMP factor vaccination with anti-
ASM IgG injection alleviates bacteria-induced inflammation, indicating a cross talk between 
CAMP factor and ASM. The results indicate a mechanism that P. acnes resists against 
phagocytosis by taking advantage of the host L-ASM. Additionally, desipramine or other ASM 
inhibitors may be potential therapeutic compounds for treating the cytotoxicity of P. acnes 
infection.

Lipopolysaccharide

Many pathogenic bacteria initiate infection and mediate their toxicity to hosts by 
producing virulence factors called toxins. Lipopolysaccharide (LPS), a main component of 
the gram-negative bacteria cell membrane, acts as a most efficacious microbial intermediator, 
which is responsible for the pathogenesis of sepsis and septic shock [159, 160]. LPS provokes 
intense proinflammatory and microbicidal activation of host cells, including macrophages, 
followed by a release of cytokines, such as TNF-α, interleukins, and NO. The sudden release 
of a significant amount of LPS into the blood stream is detrimental, often causing endothelial 
injury, tissue hypoperfusion, and refractory shock. Several receptors of LPS have been 
identified: CD14-MD2-TLR4 molecules, β2-integrins, scavenger receptors and serum LPS-
binding protein [161]. Studies have shown that cellular exposure to LPS induces activation of 
ASM and a release of ceramide in dendritic cells [147], macrophages [162], monocytes [163], 
lung tissues [164], intestinal mucosa [165] and serum [166].

LPS activates ASM not only within the cells but also stimulates the extracellular 
secretion into the blood and intestines in vivo [165, 166]. Mechanically, the activation 
of the ASM/ceramide system by LPS is inhibited by immune-modulating messenger NO 
through the formation of cGMP and through the activation of the cGMP-dependent protein 
kinase, therefore inhibiting dendritic cell death [147]. Inhibiting the NF-kB pathway by a 
cell-penetrating peptide sufficiently suppresses ASM activation. The ceramide-mediated 
production of TNF-α, IL-6, CXC chemokine CXCL8, and MCP-1, as key regulators of 
inflammation, is also reduced upon NF-kB inhibition [164]. Studies have also shown that 
the effect of LPS on ASM activation involves the production of IL-1β and TNF-α [165, 166]. 
Vice versa, ASM activation by LPS is required for the release of TNF-α [163]. Exposure to LPS 
leads to the generation of ceramide-enriched microdomain assembly and the activation of 
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the TLR4 receptor, mediating the phosphorylation of atypical PKC-ζ and the activation of the 
MAPK family, composed of ERK 1/2, p38, and JNK/SAPK.

In conclusion, these findings suggest that the ASM/ceramide system modulates the 
inflammatory response and the death of host cells upon LPS challenge.

Summary

Although multiple studies implicate the ASM/ceramide system in bacteria-host 
interactions, mechanisms regarding the roles and regulations of ASM in cellular processes 
still require further definition. Whether bacteria directly regulate ASM activity, trafficking, 
and localization or indirectly regulate other cellular pathways remains to be characterized. 
The role of lysosomal ASM in bacterial killing or immune evasion as well as the mechanisms 
of secretion of ASM on the plasma membrane during bacterial internalization requires 
further characterization. The subsequent 
biological consequences of ASM-
generated ceramide in different parts of 
the cell also remain unclear at present.

Amitriptyline, a tricyclic 
antidepressant (TCA), is a drug used for 
the treatment of a number of mental 
diseases. Importantly, amitriptyline is 
recognized as a functional ASM inhibitor 
[167]. The application of amitriptyline 
to cystic fibrosis mice normalizes 
pulmonary ceramide levels and abolishes 
pathological outcome, including 
susceptibility to infection [70]. Moreover, 
the inhibition of ASM by amitriptyline and 
other tricyclic antidepressants prevents 
P. aeruginosa infection and pulmonary 
inflammation in mice and in patients with 
cystic fibrosis [168-170]. Importantly, 
clinical trials indicate that treatment of 
cystic fibrosis patients with amitriptyline 
results in a decrease in ceramide levels in 
lung cells and an increase in lung function 
[171, 172]. With regard to ASM inhibitors 
treating bacterial infections, the dose 
and administration in experiments 
and clinical trials are shown in Table 2. 
Amitriptyline may be a novel, safe and 
effective medicine to treat CF patients.

ASM is critical in the regulation of 
host interactions with bacteria, including 
P. aeruginosa, S. aureus, mycobacteria, L 
monocytogenes, Neisseria spec., E. coli, S. 
enterica, P. acnes and bacterial toxins or 
LPS.  Fig. 3 shows the potential role of 
the ASM/ceramide system in bacterial 
infections. The infection of mammalian 
cells with bacteria triggers the activation 
of ASM and the secretion of ASM onto 
membranes as well as the extracellular 

Fig. 3. ASM/ceramide system in bacteria-host 
interactions. 1. Bacteria induce activation of ASM and 
release of ceramide, which recruits signaling molecules 
and receptors, such as NADPH oxidase, ErbB2, JNK, 
CFTR, CD95, JNK, and p38 kinase, therefore modulating 
ROS generation, cytokine release, host cell death, and 
bacterial killing. 2. ASM-generated ceramide recruits 
molecules and receptors and mediates bacterial 
internalization. In addition, the ASM/ceramide system 
is needed for the fusion of phagolysosomes. 3. The 
ASM/ceramide system is involved in mitochondria-
induced cell death upon infection. 4. Inflammatory 
cytokines stimulate the secretion of ASM from the 
cytoplasm to the extracellular environment.

 

Table 2. ASM inhibitors in treating infection or 
infection-related diseases in human or mice

 2 
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environment. ASM-generated ceramide initiates lipid domain organization, thereby 
mediating interactions of bacteria with host cells. ASM facilitates the activation of NADPH 
oxidases, which involves the generation of superoxide, responsible for bacteria killing and 
regulating cell apoptosis. Ceramide platforms also mediate the internalization of bacteria 
into host cells. Moreover, ASM-generated ceramide modifies the membrane biophysical 
properties and recruits receptor molecules, thereby modulating the fusion of phagosomes 
and lysosomes. In addition, ASM influences cytokine release and inflammatory responses. 
Taken together, although the detailed mechanisms of the ASM/ceramide system acting on 
bacterial infection remain unknown, strong evidence shows the central role of this system 
in bacteria-host interactions. Targeting the ASM/ceramide system might be a novel and 
potential therapeutic approach for treating bacterial infection.
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58 Göggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schutze 
S, Gulbins E, Uhlig S: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. 
Nat Med 2004;10:155-160.

59 Avota E, Gulbins E, Schneider-Schaulies S: DC-SIGN mediated sphingomyelinase-activation and ceramide 
generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 2011;7:e1001290.



Cell Physiol Biochem 2019;52:280-301
DOI: 10.33594/000000021
Published online: 28 February 2019 296

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Li et al.: Sphingolipids and Infections

60 Gassert E, Avota E, Harms H, Krohne G, Gulbins E, Schneider-Schaulies S: Induction of membrane 
ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral 
immunosuppression. PLoS Pathog 2009;5:e1000623.
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Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat 
Med 2008;14:382-391.

71 Brauweiler AM, Bin L, Kim BE, Oyoshi MK, Geha RS, Goleva E, Leung DYM: Filaggrin-dependent secretion 
of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death. J Allergy Clin 
Immunol 2013;131:421-427.e1-2.

72 Ranganath P, Matta D, Bhavani GS, Wangnekar S, Jain JMN, Verma IC, Kabra M, Puri RD, Danda S, Gupta N, 
Girisha KM, Sankar VH, Patil SJ, Ramadevi AR, Bhat M, Gowrishankar K, Mandal K, Aggarwal S, Tamhankar 
PM, Tilak P, et al.: Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase 
(ASM)-deficient Niemann-Pick disease. Am J Med Genet A 2016;170:2719-2730.

73 Aykut A, Karaca E, Onay H, Ucar SK, Coker M, Cogulu O, Ozkinay F: Analysis of the sphingomyelin 
phosphodiesterase 1 gene (SMPD1) in Turkish Niemann-Pick disease patients: mutation profile and 
description of a novel mutation. Gene 2013;526:484-486.

74 Carpinteiro A, Beckmann N, Seitz A, Hessler G, Wilker B, Soddemann M, Helfrich I, Edelmann B, Gulbins E, 
Becker KA: Role of Acid Sphingomyelinase-Induced Signaling in Melanoma Cells for Hematogenous Tumor 
Metastasis. Cell Physiol Biochem 2016;38:1-14.

75 Carpinteiro A, Becker KA, Japtok L, Hessler G, Keitsch S, Požgajovà M, Schmid KW, Adams C, Müller S, 
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157 Holmberg A, Lood R, Mörgelin M, Söderquist B, Holst E, Collin M, Christensson B, Rasmussen M: Biofilm 

formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin Microbiol Infect 
2009;15:787-795.

158 Nakatsuji T, Tang D-cC, Zhang L, Gallo RL, Huang C-M: Propionibacterium acnes CAMP factor and host acid 
sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. 
PLoS One 2011;6:e14797.

159 Opal SM: Endotoxins and other sepsis triggers. Contrib Nephrol 2010;167:14-24.
160 Alexander C, Rietschel ET: Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 2001;7:167-

202.
161 Fenton MJ, Golenbock DT: LPS-binding proteins and receptors. J Leukoc Biol 1998;64:25-32.
162 Józefowski S, Czerkies M, Lukasik A, Bielawska A, Bielawski J, Kwiatkowska K, Sobota A: Ceramide and 

ceramide 1-phosphate are negative regulators of TNF-alpha production induced by lipopolysaccharide. J 
Immunol 2010;185:6960-6973.

163 Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV: Acid sphingomyelinase is required for lipid Raft TLR4 
complex formation. Surg Infect (Larchmt) 2007;8:91-106.

164 von Bismarck P, Winoto-Morbach S, Herzberg M, Uhlig U, Schutze S, Lucius R, Krause MF: IKK NBD peptide 
inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulm 
Pharmacol Ther 2012;25:228-235.

165 Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CKr, 
Schuchman EH, Fuks Z, Kolesnick R: Lipopolysaccharide induces disseminated endothelial apoptosis 
requiring ceramide generation. J Exp Med 1997;186:1831-1841.



Cell Physiol Biochem 2019;52:280-301
DOI: 10.33594/000000021
Published online: 28 February 2019 301

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Li et al.: Sphingolipids and Infections

166 Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, Tabas I: 
Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between 
inflammatory cytokines and atherogenesis. Proc Natl Acad Sci U S A 2000;97:8681-8686.

167 Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E: Identification of new functional 
inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem 
2008;51:219-237.
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