Supplemental Material

Visfatin Promotes Monocyte Adhesion by Upregulating ICAM-1 and VCAM-1 Expression in Endothelial Cells via Activation of p38-PI3K-Akt Signaling and Subsequent ROS Production and IKK/NF-ĸB Activation

Yu-Ting Lin^a Luen-Kui Chen^a Deng-Yuan Jian^{a,b} Ting-Chia Hsu^a Wei-Chih Huang^a Tse-Ting Kuan^a Shao-Yun Wu^a Ching-Fai Kwok^{c,d} Low-Tone Ho^{a,c,d} Chi-Chang Juan^{a,d,e}

^aInstitute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ^bDivision of Nephrology, Wen-Lin Hemodialysis Unit, Taipei Veterans General Hospital, Taipei, Taiwan, ^cDivision of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ^dDepartment of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ^eDepartment of Education and Research, Taipei City Hospital, Taipei, Taiwan **Figure S1.** Visfatin upregulates ICAM-1 and VCAM-1 expression in endothelial cells through the PI3K/Akt- and p38-dependent pathways. Cells were incubated (A and B) in the absence or presence of 100 ng/ml visfatin for various times (0-24 h) or (C and D) with various concentrations of visfatin (0-100 ng/ml) for 24 h. The expression of ICAM-1 and VCAM-1 were measured. The results are the mean \pm SEM for three separate experiments, each in triplicate. **P* < 0.05 compared with the zero control (A-D) or the untreated control (E-H); #*P* < 0.05 compared with the visfatin alone group.

Figure S2. Involvement of p38/PI3K/Akt signaling cascade in visfatin-stimulated ROS production in endothelial cells. Cells were pre-incubated for 1 h in the absence or presence of the ERK1/2 inhibitor PD98059 (PD, 30 μ M), PI3K inhibitor LY294002 (LY, 30 μ M), p38 MAPK inhibitor SB203580 (SB, 20 μ M), or ROS scavenger NAC (5 mM). Cells were then incubated in the absence or presence of visfatin (100 ng/ml) in the continued absence or presence of the inhibitor for a further 30 min. The production of ROS were detected by dihydroethidium (DHE) staining.

Figure S3. Involvement of NOX in visfatin-stimulated ROS production, and monocyte adhesion in endothelial cells. Cells were pre-incubated for 1 h in the absence or presence of the NADPH oxidase inhibitor DPI (100 nM), followed by incubation in the absence or presence of visfatin (100 ng/ml) in the continued absence or presence of the inhibitor for a further 24 h. (A) The production of ROS and (B) the adhesion of THP-1 monocytes were measured. The results are the mean \pm SEM for three separate experiments, each in triplicate. **P* < 0.05 compared with the untreated control; #*P* < 0.05 compared with the visfatin alone group.

Figure S4. Visfatin promotes NF- κ B activation via the p38/PI3K/Akt/ROS signaling cascade. Endothelial cells were pre-incubated for 1 h in the absence or presence of PI3K inhibitor LY294002 (LY, 30 μ M), p38 MAPK inhibitor SB203580 (SB, 20 μ M), ROS scavenger NAC (5 mM), or IKK inhibitor BAY-11-7082 (BAY, 10 μ M). Cells were then incubated in the absence or presence of visfatin (100 ng/ml) in the continued absence or presence of the inhibitor for a further 24 h. NF- κ B p65 stain is shown in green and overlaid with a blue image of the DNA-intercalating dye DAPI. The representative images are shown. Scale bar = 50 μ m.

Figure S5. Visfatin upregulates ICAM-1 and VCAM-1 expression and enhances monocyte–endothelial cell adhesion through the NF-κB-dependent pathway. Endothelial cells were pre-incubated for 1 h in the absence or presence of the NF-κB inhibitor PDTC (10 µM), IKK inhibitor BAY-11-7082 (BAY, 10 µM), or Akt inhibitor triciribine (TCN, 5 µM). Cells were then incubated in the absence or presence of visfatin (100 ng/ml) in the continued absence or presence of the inhibitor for a further 24 h. The expression of (A) ICAM-1 and (B) VCAM-1 and (C and D) the adhesion of THP-1 monocytes were measured. The results are the mean ± SEM for three separate experiments, each in triplicate. **P* < 0.05 compared with the untreated control; **P* < 0.05 compared with the visfatin alone group.

Figure S6. Visfatin upregulates ICAM-1 and VCAM-1 expression and monocyte adhesion in HUVECs through the p38/PI3K/Akt/ROS/IKK/NF-κB pathways. Cells were pre-incubated for 1 h in the absence or presence of the PI3K inhibitor LY294002 (LY; 30 μM), Akt inhibitor TCN (5 μM), p38 MAPK inhibitor SB203580 (SB; 20 μM), NADPH oxidase inhibitor DPI (100 nM), ROS scavenger NAC (5 mM), NF-κB inhibitor PTDC (10 μM), and IKK inhibitor BAY-11-7082 (BAY; 10 μM), followed by incubation in the absence or presence of visfatin (100 ng/ml) in the continued absence or presence of the inhibitor for a further 24 h. The expression of ICAM-1 and VCAM-1 and monocyte adhesion to HUVECs were measured. The results are the mean ± SEM for three separate experiments, each in triplicate. **P* < 0.05 compared with the untreated control; [#]*P* < 0.05 compared with the visfatin alone group.

