Supplementary Material

Exosomal miR-451a Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Targeting LPIN1

Shaorong Zhao^a Jianjun Li^a Guomin Zhang^a Qiong Wang^a Chao Wu^a Quansheng Zhang^b Hang Wang^a Peiqing Sun^c Rong Xiang^a Shuang Yang^a

^aTianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai Univers ity, Tianjin, China, ^bTianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin, China, ^cDepart ment of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Supplementary materials

Quantitative PCR primers				
miR-451a	RT: 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT			
	ACGACAACTCA-3'			
	Forward: 5'-CGAAACCGTTACCATTAC-3'			
1111K-451d	Reversed: 5'-GTGCAGGGTCCGAGGT-3'			
U6	RT: 5'-AAAATATGGAACGCTTCACGAATTTG-3'			
	Forward: 5'-CTCGCTTCGGCACATATACT-3'			
00	Reversed: 5'-ACGCTTCACGAATTTGCGTGTC-3'			
	Forward: 5'-CCAGCCCAATGGAAACCTCC-3'			
LPINI	Reversed: 5'-AGGTGCATAGGGATAACTTCCTG-3'			
Construction of full-length LPIN1 expression vector				
LPIN1	Forward: 5'- TCCCCCGGGGGGAGCCACCATGAATTACGTGGGGCAGTTAG-3'			
	Reversed: 5'-CGACGCGTCGTTACGCTGAGGCAGAATGAAT-3'			
Construction of shRNA vectors				
sh185	5'- AAAAGGAATCTGTGGATTTGCATTTGGATCCAAATGCAAATCCACAGATTCC-3'			
sh1031	5'- AAAAGCGAATCTTCAGACACTTTATGGATCCATAAAGTGTCTGAAGATTCGC-3'			

Figure S1 miRNome analysis according to the number of reads per million (RPM) and TCGA database. A, There were 21 downregulated miRNAs with an RPM value greater than 2000 in normal subjects. B, Five miRNAs (miR-451a, miR-26-5p, let-7a-5p, miR-126-3p, and miR-191-5p) were significantly downregulated in hepatocellular carcinoma (HCC) patients in the TCGA database. ****P* < 0.001.

Figure S2 miR-451a does not affect hepatocellular carcinoma (HCC) cell cycle distribution. A, Different concentrations of miR-451a mimics were transfected into SMMC-7721 cells for 48 h. The expression of miR-451a was examined by quantitative PCR. Data were normalized to the level of U6. B and C, Different concentrations of miR-451a mimics were transfected into SMMC-7721 cells. Cell cycle distribution was measured by propidium iodide (PI) (B) and EdU (C) staining assays. NC, negative control; ****P* < 0.001

Figure S3 miR-451a regulates hepatocellular carcinoma (HCC) cell apoptosis and migration. A–G, Different concentrations of miR-451a mimics were transfected into Hep3B cells. The expression of miR-451a was examined by quantitative PCR (A). Cell viability was measured by CCK8 assays (B). Cell cycle distribution was measured by propidium iodide (PI) (C) and EdU (D) staining assays. Cell apoptosis was measured by Annexin V (E) and TUNEL (F) assays. Cell migration was determined by transwell assays (G). NC, negative control;**P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Figure S4 Exosomal miR-451a was delivered from hepatocellular carcinoma (HCC) cell lines to human umbilical vein endothelial cells (HUVECs). A, The expression of miR-451a in HUVECs was examined by quantitative PCR. HUVECs cocultured with exosomes from L-02 cell lines. GW4869 is an inhibitor of exosome secretion. B, Cellular and exosomal RNA were extracted at the indicated time points and analyzed for miR-451a levels. Left: SMMC-7721 cells transfected with 50 nM miR-451a mimics. Middle: SMMC-7721-derived supernatant exosomes. Right: HUVECs co-cultured with SMMC-7721-derived exosomes (48 h). C, Exosomal miR-451a was delivered from Hep3B cells to HUVECs. Top: Hep3B cells transfected with miR-451a-Cy3 mimics, and cultured in the presence or absence of exosome secretion inhibitor GW4869. Bottom: HUVECs incubated with Hep3B-derived exosomes. D, Cellular and exosomal RNA were extracted at the indicated time points and analyzed for miR-451a levels using U6 as an internal control. Left: Hep3B cells transfected with 50 nM of miR-451a mimics. Middle: Hep3B-derived supernatant exosomes. Right: HUVECs co-cultured with Hep3B-derived exosomes (48 h). E, Exosomes were derived from Hep3B cells transfected with miR-451a mimics in the presence or absence of GW4869, and were co-cultured with HUVECs. Cell viability was examined by CCK8 assays. F and G, Different concentrations of miR-451a mimics were transfected into HUVECs. Cell cycle distribution was measured by propidium iodide (PI) (F) and EdU (G) staining assays. NC, negative control; *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S5 LPIN1 is a target of miR-451a. A, miR-451a mimics were transfected into SMMC-7721 cells. The expression of 12 candidate targets was measured by quantitative PCR at the indicated time points. B, 293T cells were co-transfected with miR-451a mimics and different wild-type promoter luciferase reporter constructs of *AKR1B1, ATP5F1, GK* and *ASAH1*. Luciferase activities were determined 36 h after transfection. Luciferase values were normalized to *Renilla* activities. C–F, Different concentrations of miR-451a mimics were transfected into SMMC-7721 cells (C), human umbilical vein endothelial cells (HUVECs) (D) and Hep3B cells (E). The

expression of LPIN1 was detected by quantitative PCR. F, Different concentrations of miR-451a mimics were transfected into Hep3B cells. The expression of LPIN1 was detected by western blotting. NC, negative control; *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S6 LPIN1 is a critical target during miR-451a-induced hepatocellular carcinoma (HCC) cell apoptosis. A, C, and E, SMMC-7721cells (A), human umbilical vein

endothelial cells (HUVECs) (C) and Hep3B cells (E) were transfected with an LPIN1 expression plasmid in the presence or absence of miR-451a mimics. The expression of LPIN1 was determined by western blotting. B, D, and F, SMMC-7721 cells (B), HUVECs (D), and Hep3B cells (F) were transfected with specific LPIN1-targeting shRNAs in the presence or absence of miR-451a mimics. The expression of LPIN1 was determined by western blotting. G, Hep3B cells were transfected with an LPIN1 expression plasmid in the presence or absence of miR-451a mimics. Apoptosis was determined by Annexin V assays. H, Hep3B were transfected with specific LPIN1targeting shRNAs in the presence or absence of miR-451a mimics. Apoptosis was determined by Annexin V assays. PI, propidium iodide; NC, negative control; *P <0.05, **P < 0.01, ***P < 0.001.

	NEC	FDR
	NAME NES	
GO_SMALL_MOLECULE_CATABOLIC_PROCESS	2.301848	0.003673
GO_ORGANONITROGEN_COMPOUND_CATABOLIC_PROCESS	2.298454	0.001837
GO_MONOCARBOXYLIC_ACID_METABOLIC_PROCESS	2.248486	0.002851
GO_LIPID_CATABOLIC_PROCESS	2.215521	0.00436
GO_ALPHA_AMINO_ACID_METABOLIC_PROCESS	2.215225	0.003884
GO_ORGANIC_ACID_CATABOLIC_PROCESS	2.215046	0.003398
GO_CELLULAR_LIPID_CATABOLIC_PROCESS	2.192454	0.003611
GO_SULFUR_AMINO_ACID_METABOLIC_PROCESS	2.177759	0.004838
GO_LIPID_HOMEOSTASIS	2.169536	0.005424
GO_CELLULAR_AMINO_ACID_CATABOLIC_PROCESS	2.168884	0.005062
GO_ORGANIC_HYDROXY_COMPOUND_CATABOLIC_PROCESS	2.164413	0.005168
GO_REGULATION_OF_FATTY_ACID_METABOLIC_PROCESS	2.161405	0.004998
GO_FATTY_ACID_METABOLIC_PROCESS	2.146384	0.006609
GO_ORGANIC_HYDROXY_COMPOUND_METABOLIC_PROCESS	2.142804	0.006496
GO_BLOOD_MICROPARTICLE	2.205424	0.002912
GO_OXYGEN_BINDING	2.204853	0.002647
GO_VESICLE_LUMEN	2.250178	0.003801
GO_IRON_ION_BINDING	2.224138	0.004729
GO_SECRETORY_GRANULE_LUMEN	2.206314	0.003235
GO_COFACTOR_BINDING	2.168502	0.00481

Table S1 All relative miR-451a-associated gene sets based on GSEA.

Table S2 Targets	of miR-451a as pre	dicted by Targetscan.		
Target gene	3P-seq tags + 5	Cumulative weighted context++ score	Total context++ score	Metabolic process
PSMB8 CDKN2B	18 373	-0.55 -0.85	-1.09 -1.05	
CMTM6 MTRNR2L13	169 5	-1.00 -0.97	-1.03 -0.97	
OSR1 ATF2	15	-0.93 -0.6	-0.93 -0.91	
DUSP16 CXCL16	444 385	-0.33 -0.78	-0.8 -0.78	
CXorf21 TBC1D9B	5 5042	-0.78 -0.75	-0.78 -0.76	
BATF ATP5F1	5	-0.73	-0.73 -0.69	ATP synthesis
GRSF1	4414	-0.38	-0.69	
NEDD9	97	-0.67	-0.63	
HELLS	329	-0.60	-0.6	
FAM9C	5	-0.57	-0.59	
SEC23IP	765	-0.59 -0.57	-0.59	
TMEM170B	489	-0.52 -0.47	-0.53	
POU3F2	274	-0.51	-0.51	
CYB561D1	105	-0.44 -0.49	-0.51	
ASAH	5	-0.49	-0.49	Sphingolipid
FAM91A1 MSC	731	-0.48	-0.48	metabolism
TSC1 WDEV2	838	-0.45	-0.47	
CTNNBIP1 C11orf20	493	-0.33	-0.47	
CPNE3	756	-0.37	-0.44	
CRIP2	3446	-0.33 -0.43	-0.44 -0.43	
KIAA1217	320	-0.43	-0.43	
FNTA	7	-0.35 -0.41	-0.42 -0.41	Sphingelini
CERK SSU72	123	-0.39	-0.41	metabolism
PLSCR2 S10P2	5	-0.30 -0.40	-0.40	
GDI1	21	-0.40 -0.40	-0.40	
PTTG1IP	1170	-0.39	-0.39	
SAMD4B NHSL1	46 393	-0.30 -0.38	-0.39 -0.38	
GALK2	626	-0.38	-0.38	metabolism Nicotinamide
NAMPT	375	-0.35	-0.38	mononucleoti
PPARA	82	-0.32	-0.38	Cholesterol and lipid
AFRP2	1228	-0.37	-0.37	metabolism
ACADSB	239	-0.37	-0.37	Fatty acid metabolism
UNC93A GK	5	-0.37	-0.37	
KCTD10 VAPA	147	-0.37 -0.36	-0.37	
TBX1	9	-0.33 -0.35	-0.36	
MEOX2 ZNE66	5	-0.35 -0.35	-0.35	
C22orf23	6	-0.35	-0.35	Oxidoreducta
EGLN3 BAK1	15	-0.35	-0.35	e activity
SGK1 KMAU2	369 5234	-0.34 -0.34	-0.35 -0.35	
ADAM10 LETM2	385 12	-0.32 -0.34	-0.35 -0.34	
CACNA1B DKFZP779J2370	5 20	-0.34 -0.34	-0.34 -0.34	
UBE2L3 CDKN2D	1318 186	-0.34 -0.34	-0.34 -0.34	
LPIN1	357	-0.33	-0.34	Lipid metabolism
NFATC1	104	-0.32	-0.34	Glucose
RAD18	211	-0.32	-0.34	metabolism
ACADL	5	-0.33	-0.33	Fatty acid metabolism
ILGR TMEM143	13 160	-0.3 -0.32	-0.33 -0.32	
PNMA6C CYYR1	5	-0.32 -0.32	-0.32 -0.32	
MYOG MPPED2	5 42	-0.32 -0.32	-0.32 -0.32	
C4orf46 PNMA6A	128 5	-0.32 -0.32	-0.32 -0.32	
TNFRSF25 CAND2	8 92	-0.32 -0.32	-0.32 -0.32	
APBA1 EREG	12 5	-0.31 -0.31	-0.31 -0.31	
NPTN AC137932.1	2918 5	-0.31 -0.31	-0.31 -0.31	
PRICKLE2 SLC7A6OS	20 751	-0.31 -0.31	-0.31 -0.31	
CRELD2 AKTIP	4044 46	-0.31 -0.30	-0.31 -0.30	
TRAPPC3L THAP4	5 744	-0.30 -0.30	-0.30 -0.30	
TSC1 BTBD9	1	-0.47 -0.20	0,2 0,2	
S1PR2 C11orf30	1	-0.40 -0.46	0,21 0,21	
AEBP2 DKFZP779J2370	1	-0.37 -0.34	0,21 0,21	
CDKN2D TBX1	1	-0.34 -0.36	0,21 0,21	
PRICKLE2 SAMD4B	1	-0.31 -0.39	0,21 0,21	
YWHAZ PMM2	1	-0.23 -0.26	0,21 0,21	
CAB39 TRIM66	1	-0.31 -0.19	0,21	
PRR12 SZRD1	1	-0.28 -0.30	0,21	
PSMD11 OSR1	1	-0.31 -0.93	0,21 <0.10	
ATF2 PSMR ⁸	1	-0.91	< 0.10	
GK	1	-0.37	< 0.10	Glycerol
VAPA MEF2D	1	-0.36 -0.26	< 0.10 < 0.10	
FBXO33 GATAD2R	1	-0.19 -0.10	< 0.10	
VPS18 MIF	1	-0.20	< 0.10 ORF	
DBNL	1	-0.07	ORF	