Supplemental Material

A Selective Inhibitor of Ubiquitin-Specific Protease 4 Suppresses Colorectal Cancer Progression by Regulating β-Catenin Signaling

Hoa Hong Nguyen^a Truc Kim^a Thanh Nguyen^a Myong-Joon Hahn^a Sun-II Yun^a Kyeong Kyu Kim^{a,b,c}

^aDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea, ^bInstitute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea, ^cSamsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

Supplementary Tables (S1–2)

Primer name	Sequence (5'→3') ^a	Purpose	
8839F	ATATAT <u>GGATCC</u> CGTGAGCGACCGG	cloning of human USP4 gene into plasmid pVFT1S	
8839R	ATATAT <u>CTCGAG</u> ATCATCTCGACGTTGGTA AAATAG		
2330F	AAACTT <u>GGATCC</u> ATGTTTGGCCCCGCTAAA	cloning of human <i>YOD1</i> gene into plasmid pVFT1S	
2331R	TTCATG <u>CTCGAG</u> TCACACTTCTCCAAAGTT		
CCND1F	CCGTCCATGCGGAAGATC	qRT-PCR for cyclin D1 gene	
CCND1R	ATGGCCAGCGGGAAGAC		
AXIN2F	CCTGCCACCAAGACCTACAT	qRT-PCR for	
AXIN2R	GTTTCCGTGGACCTCACACT	AXIN2 gene	
USP4F	CCTGGGCTCTGTGGACTTG	qRT-PCR for <i>USP4</i> gene	
USP4R	TGTTGATTTCGGCTTCATACTC		
CTNNB1F	ACCTTTCCCATCATCGTGAG	qRT-PCR for β- catenin gene	
CTNNB1R	AATCCACTGGTGAACCAAGC		
GAPDHF	CTGGTAAAGTGG ATATTGTTGCCAT	qRT-PCR for <i>GAPDH</i> gene	
GAPDHR	TGGAATCATATTGGAACATGTAAACC		

Supplementary Table S1. Primers used in this study.

^a The restriction sites are underlined.

No.	ID	Chemical name	Structure	%Inhibition
1	2C6	[4-(2-furyl)phenyl]amine hydrochloride		65.4
2	2D7	7-[(dimethylamino)methyl]- 2,2,4-trimethyl-1,2-dihydro-6- quinolinol	HO HO H ₃ C-N CH ₃ H ₃ C-N CH ₃	100
3	3G6	2,3-phenazinediamine hydrochloride		82.9
4	5F7	N-(4-aminophenyl)benzamide		76.5
5	5E9	N~8~,N~8~,3-trimethyl-2,8- phenazinediamine hydrochloride	H_3C	85.9
6	6G10	2,4-dimethyl-7H-chromen-7- one		94.2
7	6D11	2,7-diamino-4-(4- hydroxyphenyl)-4H-chromene- 3-carbonitrile	H ₂ N O NH ₂	88.8
8	6A2	1,3-benzothiazol-5-amine	H ₂ N N	100
9	9A9	N-benzylbenzene-1,4-diamine	NH ₂	71.7
10	17C2	3-(2,2-dichloro-1- methylcyclopropyl)-2- propynoic acid		62.4
11	17B3	N-6-quinoxalinyl-4- morpholinecarbothioamide		100

Supplementary Table S2. USP4 inhibitors selected in the initial screening.

continued on next page

-	No.	ID	Chemical name	Structure	%Inhibition
	12	17D11	2,4-bis(4-methyl-1- piperazinyl)aniline		94.3
	13	18H5	N-2,1,3-benzothiadiazol-5-yl-N'- (2-methoxyethyl)thiourea		100
	14	18B7	2-amino-7,7-dimethyl-5-oxo-4- (1H-pyrrol-2-yl)-5,6,7,8- tetrahydro-4H-chromene-3- carbonitrile		59.8
	15	22H8	4-hydroxy-2-methyl-1-naphthyl acetate	CH3 OCO	100
	16	22G11	[5-(4-amino-2-chlorophenyl)-2- furyl]methanol		94.7
	17	23A9	4-(2-pyridinyl)-3a,4,5,9b- tetrahydro-3H- cyclopenta[c]quinoline-8- carboxylic acid	HO NH	74.2
_	18	23G11	4-(3-pyridinyl)-3a,4,5,9b- tetrahydro-3H- cyclopenta[c]quinoline-8- carboxylic acid		68.9

Supplementary Table S2. (continued) USP4 inhibitors selected in the initial screening.

Supplementary Fig. S1. Inhibitory activity of USP4 inhibitors selected in the initial screening.

(A) Indicated concentrations of selected compounds (Supplementary Table S2) were incubated with USP4 and Ub-AMC for 20 min at room temperature. Percentage of Ub-AMC cleavage was calculated based on the fluorescent AMC measured by a fluorescence reader. The 5E9 compound was identified as neutral red.

(B) His-tagged USP4 was pre-incubated with different concentrations of selected compounds and then reacted with GST-Ub-HA for 4 h at 37 °C. The mixtures were separated by 12% SDS-PAGE and stained with Coomassie Blue dye.

Supplementary Fig. S2. NR enhances the binding of USP4 and β -catenin.

SRT-USP4 was transfected into HCT116 cells, and the indicated concentration of NR was added to the cell medium for 24 h. Co-precipitated β -catenin protein was detected by Western blotting after IP with anti-SRT antibody (top). The band intensity of β -catenin was measured by densitometry and normalized to the precipitated USP4 (bottom).

Supplementary Fig. S3. 2,3-diaminophenazine inhibits USP4 activity *in vitro* but not in HCT116 cells.

(A) Chemical structure of 2,3-diaminophenazine.

(B, C) 2,3-diaminophenazine inhibited USP4 deubiquitinating activity *in vitro*. Recombinant USP4 protein was incubated with various concentrations of 2,3-diaminophenazine, and then the hydrolysis of certain substrates was measured using a GST-Ub-HA deubiquitination assay (B) and Ub-AMC deubiquitination assay (C).

(D) 2,3-diaminophenazine did not affect the activity of other DUBs. USP4, YOD1, USP5, UCHL1, and USP14 were incubated with and without 200 μ M of 2,3-diaminophenazine, and the release of AMC was measured using a Ub-AMC deubiquitination assay.

(E, F) 2,3-diaminophenazine prevented USP4 deubiquitinating activity on both K48 and K63 linkages. The monomerization of the K48-polyubiquitin chain (E) and K63-polyubiquitin chain (F) by USP4 was tested with increasing concentrations of 2,3-diaminophenazine and observed using Coomassie gel staining.

(G, H) 2,3-diaminophenazine did not affect β -catenin expression in HCT116 cells. (G) HCT116 cells were treated with various concentrations of 2,3-diaminophenazine for 24 h. (H) Cells were treated with 40 μ M of 2,3-diaminophenazine and harvested at the indicated time points. The expression of β -catenin was obtained using Western blot analysis. β -actin was used as a loading control.