Supplemental Material

Different Pharmacological Properties of GLUT9a and GLUT9b: Potential Implications in Preeclampsia

Benjamin P. Lüscher^{a,b,c} Daniel V. Surbek^{a,b} Benjamin Clémençon^c Xiao Huang^{c,d} Christiane Albrecht^{c,d} Camilla Marini^{a,b} Matthias A. Hediger^{c,d} Marc U. Baumann^{a,b}

^aDepartment of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland, ^bDepartment of Biomedical Research, University Hospital of Bern, University of Bern, Bern, Switzerland, ^cInstitute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, ^dSwiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland

FIGURE LEGEND SUPPLEMENTAL FIGURES

FIGURE S1A: hGLUT9a chloride replacement by bromide.

hGLUT9a-mediated current was reduced to $90\% \pm 6\%$ when the chloride concentration was reduced to 6mM by replacing it with 90mM bromide.

FIGURE S1B: hGLUT9b exposed to 20mM iodine

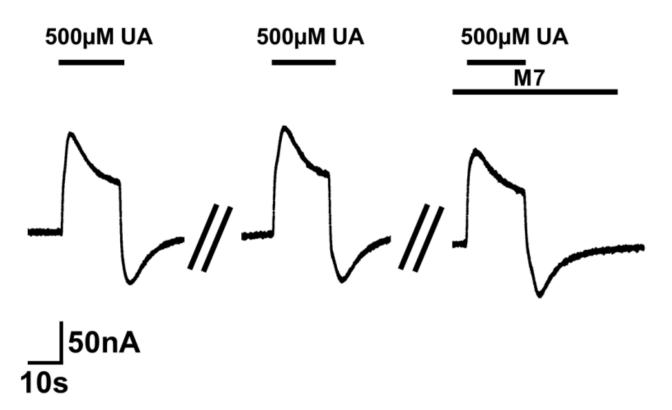

hGLUT9b-mediated current was not affected by iodide even at 20mM concentration.

FIGURE S1C: Functional comparison of hGLUT9a, NmodGLUT9a and H₂O injected oocytes.

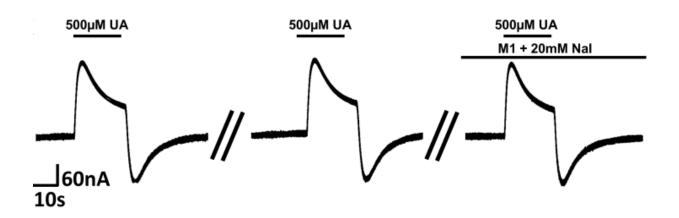
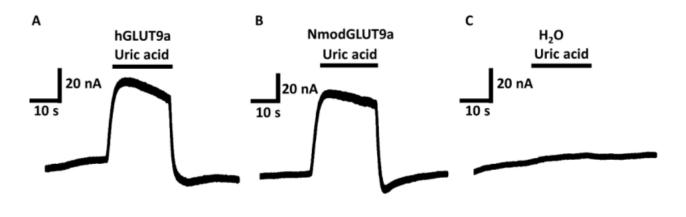
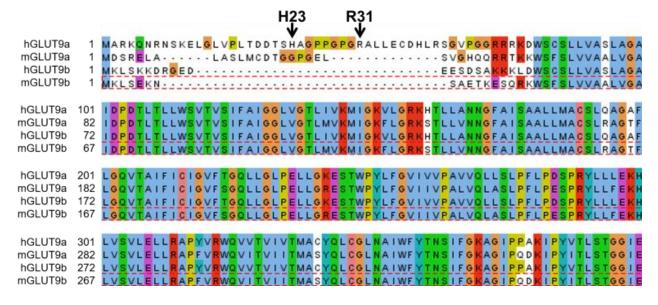

hGLUT9a-mediated current amplitude and shape were equal when compared to NmodGLUT9a. H₂O injected oocytes did not result in a current.

FIGURE S1D. Alignment of hGLUT9a, mGLUT9a, hGLUT9b and mGLUT9b


Alignment has been performed using T-COFFEE alignment tool applying a CLUSTALX color code [1, 2].


Supplemental Figure S1A

Supplemental Figure S1B

Supplemental Figure S1C

Supplemental Figure S1D

References supplemental information

- 1. Di Tommaso, P., et al., *T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension*. Nucleic Acids Res, 2011. **39**(Web Server issue): p. W13-7.
- 2. Kemena, C. and C. Notredame, *Upcoming challenges for multiple sequence alignment methods in the high-throughput era*. Bioinformatics, 2009. **25**(19): p. 2455-65.