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Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. Since 
EVs are also released during pathological conditions, there has been considerable interest in 
their potential as sensitive biomarkers of cellular stress and/or injury. In the context of kidney 
disease, urinary EVs are promising indicators of glomerular and tubular damage. In the present 
review we discuss the role of urinary EVs in kidney health and disease. Our focus is to explore 
urinary large EVs (lEVs, often referred to as microparticles or microvesicles) as direct and non-
invasive early biomarkers of renal injury. In this regard, studies have been demonstrating 
altered levels of urinary lEVs, especially podocyte-derived lEVs, preceding the decrease of 
renal function assessed by classical markers. In addition, we discuss the role of small EVs (sEVs, 
often referred to as exosomes) and their contents in kidney pathophysiology. Even though 
results concerning the production of sEVs during diseased conditions are varied, there has 
been a consensus on the importance of urinary sEV content assessment in kidney disease. 
These mediators, including EV-released miRNAs and mRNAs, are responsible for EV-mediated 
signaling in the regulation of renal cellular homeostasis, pathogenesis and regeneration. 
Finally, steps necessary for the validation of EVs as reliable markers will be discussed.

Introduction

Extracellular vesicles (EVs) are emergent mediators of intercellular communication as 
well as biomarkers of disease [1–3]. These biologically active membrane-coated vesicles 

Review

Accepted: 23 December 2019

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of 
modified material requires written permission.

DOI: 10.33594/000000207
Published online: 29 January 2020

© 2020 The Author(s)
Published by Cell Physiol Biochem 
Press GmbH&Co. KG, Duesseldorf
www.cellphysiolbiochem.com

© 2020 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Dylan Burger Kidney Research Centre, Department of Cellular and Molecular Medicine
The Ottawa Hospital Research Institute, University of Ottawa, 2513-/451 Smyth Road, 
Ottawa, ON K1H 8M5 (Canada)
E-Mail dburger@uottawa.ca

https://doi.org/10.33594/000000207


Cell Physiol Biochem 2020;54:88-109
DOI: 10.33594/000000207
Published online: 29 January 2020 89

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2020 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Medeiros et al.: EVs as Biomarkers of Kidney Injury

are released by cells during physiological conditions in addition to conditions of stress, 
injury or death. Mechanisms of EV-mediated signaling occur through antigen presentation, 
receptor-mediated signaling, cell membrane fusion and/or endocytosis [4, 5]. EV content 
or “cargo” includes functional cytoplasmic proteins, peptides, lipids, nucleic acids (DNA, 
mRNA, microRNA, lncRNAs) and other signaling molecules that modulate cellular function, 
promoting autocrine or paracrine responses [6, 7]. On their surface, EVs present characteristic 
protein markers which can be used to identify their origin [7].

Size and mechanism of biogenesis should be considered when distinguishing different 
types of EVs: (i) apoptotic bodies are > 1 µm EVs that are formed during the late stages of 
cellular death by apoptotic pathways; (ii) microparticles (MPs), also termed microvesicles 
(MVs) are ~100 – 1000 nm fragments released by membrane blebbing and eventual shedding 
into the extracellular milieu; and, (iii) exosomes are smaller EVs (~20 – 150 nm), formed in a 
multi-step mechanism, where intracellular vesicles accumulate within multivesicular bodies, 
which merge with the plasma membrane and release exosomes. Other EV subpopulations (i.e. 
apoptotic nanovesicles, exomeres, oncosomes, migrasomes) have also been described, often 
to refer to EV populations in a specific setting (i.e. oncosomes are EVs released by cancer cells; 
migrasomes are generated during cell migration) [8]. These subpopulations tend to be much 
less pervasive in literature. A summary of the biogenesis of major EV classes is described in 
Fig. 1 and readers are directed to Chuo et al. 2018, D’Souza-Schorey & Schorey 2018, Abels & 
Breakefield, 2016 and Kalra et al. 2016 for more detailed reviews of EV biogenesis [4, 7–9]. 
Recent guidance from the International Society of Extracellular Vesicles suggests identifying 
~100-1000 nm vesicles as “large EVs” (lEVs) and ~40-100 nm vesicles as “small EVs” (sEVs) 
when size is the primary descriptor and their origin is unclear. This represents a convenient 
distinction as many separation techniques effectively segregate based on size, however it 
is important to note that 
there is significant overlap 
of sizes between exosomes 
and MVs such that one 
cannot simply conclude that 
large EVs ≠ MV and small 
EVs ≠ exosomes. Regardless, 
these terms sEV and lEV 
will be used as appropriate 
throughout the present 
discussion, regardless of 
the terminology used in the 
original manuscript. When 
the size of the EVs is not 
clear from a manuscript we 
will employ the term “EV”.

Several studies have 
reported circulating lEVs 
as biomarkers of vascular 
disease, reflecting early 
vascular damage during 
prothrombotic and 
proinflammatory states [6]. 
In plasma, lEVs derived from 
endothelial cells, platelets 
and leukocytes have 
been associated with the 
development/progression 
of kidney diseases, in acute 
kidney injury (AKI), chronic 

Fig. 1. Biogenesis of major extracellular vesicles classes. Apoptotic 
bodies are larger EVs (> 1 µm) formed during cellular death by 
apoptotic pathways. Microparticles (MPs) are sized ~100 – 1000 nm 
and released by membrane blebbing and shedding into the extracellular 
space. Exosomes are smaller (~40 – 100 nm), formed in a multi-step 
mechanism, with formation of multivesicular bodies (accumulation of 
intracellular vesicles) and posterior merge with the plasma membrane.
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kidney disease (CKD), diabetic nephropathy (DN), lupus nephritis and nephrotic syndrome, 
among others [2, 3,10, 11]. However, urine is also a rich source of EVs [12]. In the present 
review we discuss the role of urinary EVs in kidney disease. In this context, circulating EVs 
are not likely able to cross the glomerular filtration barrier in significant numbers due to 
their size, thus, EVs in urine are believed to arise mainly from epithelial and parenchymal 
cells in direct contact with the urine throughout the nephron and bladder [12, 13]. This has 
led to the assessment of urinary EVs as putative non-invasive markers of renal injury [12–
14].

Urinary lEVs as biomarkers of kidney injury

Podocyte-derived vesicles were first described as membrane-bound vesicles enriched in 
phospholipids and cholesterol, found in the urine of patients with minimal change disease, 
membranous nephropathy, focal sclerosis, and DN [15]. These vesicles were approximately 
100-200nm in size, consistent with the definition of lEVs. In 2010, Hara et al. demonstrated 
that podocyte-lEVs were derived from the tip vesiculation of podocyte’s apical membrane, 
more specifically by microvilli transformation and shedding into Bowman’s space. These 
urinary lEVs from nephritic and nephrotic patients had a mean size of 200nm and absence 
of “exosomal” markers, such as CD24 and CD63 [16]. In addition, podocalyxin-associated 
lEVs were isolated from the urine of patients with idiopathic membranous nephropathy 
and focal segmental glomerulosclerosis and then characterized as released by podocytes in 
glomerular diseases [17]. Based on these observations, podocyte-lEVs gained consideration 
as direct, non-invasive markers of podocyte injury.

Our group has been investigating the role of podocyte-lEVs in diabetic kidney disease. We 
previously demonstrated that podocytes release lEVs in vitro when exposed to high glucose 
for 24h [18]. In addition, we were amongst the first to use nanoscale flow cytometry for 
assessment of urinary lEVs. Using this approach, we reported that urinary levels of podocyte-
lEVs (podocalyxin+ or podoplanin+) were increased in diabetic mice (streptozotocin-
treated, db/db, OVE26 and Akita mice) [18]. Levels of urinary podocyte lEVs were strongly 
correlated with albuminuria in these mice; however, elevated levels of podocyte lEVs could 
be identified before the development of albuminuria. Recently, we reported that significant 
increases in podocyte-lEVs may be detected in type 1 diabetes patients also in the absence of 
albuminuria, nephrinuria or glomerular filtration rate (GFR) decline [19]. In the same study, 
we observed that podocyte-lEVs (podoplanin+) were significantly higher during clamped 
hyperglycemia, suggesting glucose-mediated induction of lEVs formation in accordance 
with previous in vitro experiments [19]. In type 2 diabetes, urinary lEVs were reported to be 
associated with DN progression. De and colleagues (2017) observed a progressive increase 
in urinary total EVs and ≥130nm lEVs (podocalyxin+) in diabetic patients with increases in 
albuminuria [20]. In addition, Kamińska et al. (2016) identified ~100nm sized urinary EVs 
inversely correlated with GFR in diabetic patients; however, no differences were observed 
in patients with advanced kidney disease [21]. Collectively, these findings indicate that 
in diabetic kidney disease, total and podocyte-derived EVs can be altered when classical 
markers of kidney function are still unaltered, which suggests that they are reflective of 
early glomerular damage. Of note, higher levels of urinary lEVs during hyperglycemic states 
suggest that more podocyte damage could occur in diabetic patients with poor glycemic 
control. However, whether these events are associated with a premature development of 
kidney disease in type 1 or 2 diabetes, is a matter of further investigation.

Other studies have examined EVs derived from podocytes, in various kidney disorders. 
For example, Kwon et al. (2017) reported higher levels of podocyte-EVs (podocalyxin+/
nephrin+) in patients with renovascular hypertension when compared with hypertensive 
patients with similar blood pressure values [22]. They concluded that this reflects podocyte 
injury associated with the decrease of renal blood flow and perfusion. It is worth noting that 
the authors did not provide any information regarding the size of the vesicles studied and 
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only flow cytometry was used to assess EVs in this study. Accordingly, it may be that only a 
fraction of urinary EVs were analyzed. In contrast with these observations, podocyte-EVs 
were not altered in renovascular hypertension in the study of Santelli et al. (2019). Despite 
that, the authors reported an increase in tubule-derived p16+ (marker of cellular senescence) 
EVs in patients with renovascular hypertension and essential hypertension, which were 
directly associated with circulant proinflammatory biomarkers and negatively associated 
with GFR [23]. Recent work by Zhang et al. (2019) reported podocyte-lEVs (podocalyxin+/
nephrin+) to be significantly increased in obese patients as well as in an experimental 
porcine model of metabolic syndrome. In this study, the authors reported that urinary lEVs 
were directly associated with podocyte damage (foot process effacement, podocyte size and 
number, nephrin and podocalyxin tissue expression) and with renal dysfunction [24]. Higher 
levels of podocyte-derived lEVs were associated with podocyte injury in lupus nephritis 
and with increased lupus disease activity [25]. In patients with idiopathic membranous 
nephropathy, the same group reported that the decrease in urinary podocyte-lEVs were 
associated with disease remission after immunosuppressive therapy [26]. In addition, 
urinary lEVs of podocyte origin (podocin+/nephrin+) were significantly correlated with 
albuminuria in preeclampsia [27]. Taken together, these studies highlight the potential of 
urinary podocyte EVs as early biomarkers of podocyte damage in a wide range of clinical and 
metabolic disorders.

Similar results have been obtained when looking at urinary EVs from other cell types. 
For example, in kidney transplant recipients, urinary CD133+ EVs (derived from progenitor 
cells) were demonstrated to be released by the donor’s glomeruli (CD2AP+) and proximal 
tubule cells (megalin+). The presence of CD133+ vesicles was associated with graft function, 
since patients with poor graft function presented lower urinary levels of these progenitor 
EVs. This suggests a potential protective role of progenitor cell-derived EVs during the 
reestablishment of kidney function. Consistent with this, CD133+ EVs were not detected in the 
urine of patients with end-stage kidney disease [28]. We recently studied proximal tubule-
derived lEVs (megalin+) in a mouse model of adenine-CKD treated with PBI-4050. PBI-4050 
is an agonist of the G protein-coupled receptor 40 that has been consistently shown to reduce 
kidney fibrosis and inflammation in preclinical models [29, 30]. We observed that PBI-4050 
treatment was associated with lower levels of tubular lEVs parallel to improvement in tubular 
injury in adenine-fed mice [30]. Thus tubular lEVs appeared to be indicative of response to 
therapy in this animal model. Turco et al. (2016) identified that urinary EV levels decrease in 
parallel with the decline of kidney function associated with aging. Significant reductions in 
urinary EVs were also associated with nephron hypertrophy and global glomerulosclerosis 
in the same study [31]. The authors suggested that a significant decrease in EV production 
could be correlated with the renal function decline, but at which stage of kidney disease 
progression the “drop” in EV levels happens and if this is directly associated with extensive 
cellular death and nephron loss remains to be clarified. Of note in this study is the fact that 
the authors identified EVs by flow cytometry and that certain antibodies used targeted 
intracellular antigens (i.e. cytokeratins). Thus it is possible that non-EV cell fragments were 
enumerated by this approach.

Although there is some evidence suggesting that tubular lEVs are altered in kidney 
diseases, further studies are necessary to clarify the role of tubule-derived lEVs during acute 
and chronic renal damage. In this regard, it is interesting to note that De and colleagues have 
suggested that tubular markers such as megalin are more likely to be associated with sEVs, 
while podocyte markers are more frequently observed in urinary lEVs [20]. Notably, urinary 
lEVs from extrarenal cell sources could also provide insights about cellular activation in 
renal pathophysiology, as recently demonstrated by Burbano et al. (2019), who observed 
higher levels of urinary lEVs expressing specific markers of monocyte activation in lupus 
nephritis [32]. The authors speculated that this could reflect on the presence of inflammatory 
infiltrates in renal parenchyma. Urinary lEVs containing other biomarkers, such as monocyte 
chemoattractant protein-1 (MCP-1) and neutrophil gelatinase-associated lipocalin (NGAL), 
were also investigated in kidney stone disease [33]. Therefore, while it is believed that kidney 
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cells are the major source of lEVs in urine, these findings suggest that the assessment of renal 
endothelial and inflammatory responses might be possible when investigating urinary lEVs.

In summary, urinary lEVs are promising biomarkers of kidney injury, with significant 
increases observed in early stages of kidney diseases. Podocyte-lEVs, in particular, have 
been shown to associate with early glomerular damage in metabolic disease, renovascular 
hypertension, pre-eclampsia and lupus. An important consideration here is the fact that 
urinary flow rate can be highly variable between and even within individuals. This can have 
a profound impact on the concentration of urinary EVs. As such it is advisable to normalize 
in some fashion, although this has not always been done. We, and others have normalized 
to urinary creatinine levels in an effort to address this issue [18, 19, 33]. Approaches such 
as measuring levels over a 24 hour time-period or normalizing to urine osmolality may 
also be considered however at the moment there is no consensus on the best approach to 
optimization and we await guidance on this.

Urinary sEVs as biomarkers of kidney diseases

Urinary sEVs can be derived from renal cells in all nephron segments, as well as the 
bladder and prostate [34]. Conflicting results concerning the production of sEVs by kidney 
cells in the setting of clinical diseases can be found in the literature. On one hand, some 
authors reported unaltered urinary levels of sEVs in kidney disease, [28, 35–39] while 
others have demonstrated significant increases in urinary sEV levels, especially during AKI 
[40–43]. Evidence supporting the latter hypothesis includes the production 60-80% more 
sEVs by proximal tubular epithelial cells subjected to inflammatory or hypoxic conditions in 
vitro [44]. In addition, a recent study reported significant increases in sEV production in IgA 
nephropathy, which was correlated with tubular injury, histologic activity and proteinuria 
[41]. Similarly, Yu et al. (2018) observed higher numbers of urinary sEVs in CKD patients 
[45]. Further studies are needed to confirm whether direct increases in sEV release by 
kidney cells is reflected in urine as increased urinary sEVs.

There has been considerable focus on urinary sEV content in kidney disease. Of note, 
sEV content is protected from degradation by proteases and nucleases in urine by the 
vesicle’s bilayered lipid membrane. This may facilitate analysis of protein expression inside 
sEVs as a form of “liquid biopsy” to identify molecular determinants of renal pathology. Early 
studies examining sEVs in human urine focused on proteomic analysis of the sEV urinary 
fraction after ultracentrifugation [46]. Pisitikun et al. (2004) initially identified ~300 
proteins including many proteins well-established to play a critical role in kidney function. 
More recent studies report over 2000 different proteins expressed within urinary sEVs [47, 
48]. Next, we discuss the evaluation of sEV content in kidney disease with a specific focus on 
transcription factors, sodium (Na+) and water transporters and RNA species.

Ion and water transporters
Emerging evidences suggest that levels of Na+ transporters within sEVs are consistent 

with their expression in kidney tissue in experimental models [49, 50]. Du Cheyron et al. 
(2003) reported the presence of Na+/H+ exchanger 3 in “urine membrane fractions” of 
patients with prerenal azotemia and acute tubular necrosis [51]. Of note, as sEVs were 
not explicitly demonstrated in these urine samples, the authors used the term “membrane 
fractions” to describe urine pellets obtained after ultracentrifugation (200,000g for 120 
minutes). Further studies demonstrated urinary sEV excretion of other Na+ transporters as 
sensitive markers of Na+ handling and blood pressure regulation in kidney diseases: Na-
Cl-K co-transporter 2 (NKCC2) is significantly elevated in urine samples of patients with pre-
eclampsia [52] and DN [53]; increased activation of the epithelial sodium channel (ENaC) 
was also reported in diabetic patients [54]; alterations in sEV sodium-chloride cotransporter 
(NCC) were associated with mineralocorticoid administration [55] and calcineurin-induced 
hypertension in kidney transplant recipients [38]. Significant decreases in sEV-NCC and 
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NKCC2 has been used to phenotypically differentiate hereditary salt-losing tubulopathies 
[56]. Moreover, the detection of the B1 subunit of the distal tubule V-ATPase ion exchanger 
in urinary sEVs during induced metabolic acidosis suggests that these EVs could be involved 
in the regulation of acid-base homeostasis [57].

Aquaporins (AQPs) were also reported in urinary EVs [58]. Ikeda’s group demonstrated 
significant reductions in urinary sEV APQ-1 and -2 in early stages of I/R-AKI [35, 40]. In 
gentamicin-treated rats, they observed significant early increases in urinary sEV excretion 
of AQP-2 followed by significant reductions six days after, which was accompanied by 
urinary concentration defects [42]. The dynamics of AQP-1 and -2 release in EVs after 
cisplatin treatment were also studied; while urinary sEV AQP-1 increases at early stages and 
significantly decreases in late AKI, dramatic reductions in AQP-2 can be found even at 24h 
after AKI induction, which suggests that sEV APQ-2 in urine can be used as an early biomarker 
of cisplatin-induced AKI [59]. Recently, the group observed that reductions of sEV AQP-2 
are significantly associated with lower urine osmolality in kidney transplant recipients. This 
alteration may reflect concentration defects in transplant recipients, however it is difficult 
to determine whether the reduction in AQP-2 precedes the drop in urine osmolality or vice-
versa [60]. In addition, the role of sEV APQs has been also investigated in DN. In fact, one of 
the first studies that demonstrated urinary EVs, focusing on the increase of AQP-2 expression 
in response to vasopressin, was performed in diabetic patients [61]. More recently, Rossi 
et al. (2017) reported significant increases in urinary excretion of AQP-1, -2 and -5 in 
diabetic patients with albuminuria, and AQP-2 and -5 were significantly associated with the 
progression of DN [53]. These results can elucidate mechanisms of urinary concentration 
defects in some disorders.

Transcription factors
The presence of transcription factors in urine was specifically demonstrated in 

sEV fractions [62, 63]. The presence of various transcription factors in urinary sEVs has 
been reported in both AKI and CKD [62]. Significant increases in urinary sEV activating 
transcription factor 3 (ATF3) was shown in early sepsis-induced and ischemic AKI [63, 
64]. ATF3 may, in fact, play a causal role in AKI as Chen et al. (2014) have shown that ATF3 
inhibits MCP1-expression in vitro and ATF3-knockout mice showed a higher I/R-induced 
inflammation [63].

Urinary sEV Wilm’s tumor protein 1 (WT-1) was demonstrated to be significantly      
increased in patients with type 1 diabetes and associated with the decline of kidney function 
in diabetic kidney disease [65]. Recently, the work of Abe et al. (2018) reported that 
hyperglycemia can stimulate the mobilization of WT-1 from the podocyte cytoplasm to be 
released within sEVs. This may explain the association between sEV WT-1 and DN progression, 
since they also observed that higher basal levels of urinary WT-1 were significantly associated 
with rapid decline of kidney function in type 2 diabetes [66]. In summary, these studies 
demonstrated that the alterations in urinary sEV levels of transcription factors could reflect 
the regulation of gene expression during kidney injury.

mRNAs and miRNAs
Nucleic acid content in urine sEV has also emerged as a possible avenue for biomarker 

discovery. As sEVs can be released by kidney cells during stress conditions (i.e. hypoxia, 
hyperglycemia, oxidative stress, inflammation, acidosis), [67] several studies have examined 
the role of mRNAs and miRNAs delivered by sEVs during kidney injury and their effects on 
the recipient cell. In this regard, the transference/exchange of mRNAs and miRNAs between 
cells from different segments of the nephron (as discussed in the next topic) is emerging as 
a novel regulator of kidney function [14]. Independent of this, sEVs secreted by renal cells 
in contact with the urinary space may be assessed for their RNA content. In fact, sEV RNAs 
are more stable in urine samples than “free” RNA [68, 69]. In Table 1, studies investigating 
urinary sEV RNAs in kidney disease are summarized.
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Collectively, these findings confirm that sEV RNA and miRNA may be useful biomarkers. 
Should such markers be altered during renal cellular stress and/or injury it is possible that 
they can be assessed non-invasively in urinary EVs to evaluate the molecular status of a given 
patient for the purpose of individualized medicine. For example, kidney fibrosis is associated 
with increased excretion of specific exosomal miRNAs and mRNAs in the urine, [39, 41, 
45, 70–73] as described in Table 1. This may provide evidences of fibrosis without a need 
of a biopsy. The evaluation of specific molecules involved in gene regulation and protein 
expression, such as exosomal transcription factors, miRNAs and mRNAs, could directly 
reflect possible mechanisms of altered cellular function in renal pathology.

Table 1. Summary of studies demonstrating urinary small extracellular vesicles-derived RNA species as 
biomarkers of kidney disease. Patterns of exosomal RNAs expression are demonstrated as increased (↑) 
or decreased (↓). #DM1, *DM2. ATF3 = activating transcription factor 3; CCL2 = chemokine (C-C motif) 
ligand 2; CD2AP = CD2-associated protein; CysC = cystatin C; FSGS = focal segmental glomerulosclerosis; 
GN = glomerulonephritis; IL = interleukin; miR = microRNA; NDUFB2 = NADH:ubiquinone oxidoreductase 
subunit B2; OAZ1 = ornithine decarboxylase antizyme 1; SLC12A1 = Solute carrier family 12 member 1; 
UMOD = uromodulin; WT-1 = Wilm’s tumor protein 1
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EV signaling across the nephron

EVs may also alter signaling to target cells by delivering different functional molecules 
including miRNAs and mRNAs. Studies have shown that kidney cells can deliver EVs and 
promote intra- and intercellular communication within the nephron in order to modulate 
cellular homeostasis [12, 74]. Gracia et al. (2017) demonstrated that sEV-derived miRNAs 
could influence downstream signaling responses in cultured renal epithelial cells, altering 
the expression of potassium channel ROMKI1 and calcium-transporter PMCA1 in collecting 
duct cells, as well as regulating the expression of amino acid-transporter SNAT2 in proximal 
tubular cells [75]. It is worth noting that the down-regulation of proteins was measured by 
Western blot and RNA interference was not validated directly (i.e. luciferase reporter assay). 
Accordingly, one cannot conclude that the down regulation of protein was definitively a result 
of miRNA transfer. Co-culture experiments have also demonstrated that sEVs can transfer 
functional AQP-2 in response to vasopressin, regulating water reabsorption by collecting 
duct cells [76, 77]. Fig. 2 highlights intercellular communication between kidney cells and 
other cell types promoted by EVs and their effects in renal homeostasis.

Importantly, the health status of the donor cells seems to determine the effect (beneficial 
or deleterious) on recipient cells. For example, EVs derived from healthy tubular cells can 
promote mesenchymal-to-epithelial transition and contribute to tissue repair [78] whereas 
tubular cells exposed to hypoxia or inflammatory mediators can promote macrophage 
infiltration and tubulointerstitial inflammation via EV signaling [79, 80]. Thus, the effects 
promoted by EVs in kidney cells may also contribute to renal pathogenesis. In this regard 
we recently demonstrated that podocyte-derived lEVs can induce a pro-fibrotic signaling 
response in the proximal tubule. This process involved a p38 MAPK/Smad3-associated 

Fig. 2. Extracellular vesicles-promoted signaling in kidney homeostasis and pathogenesis. EVs can participate 
in kidney physiological processes, such as transference of aquaporins. EVs can also regulate apoptosis and 
reactive oxygen species (ROS) production in tubular and collecting duct cells under pathological conditions, 
induce epithelial-to-mesenchymal transition (EMT) and contribute to tubulointerstitial fibrosis. In addition, 
the cross-talk between renal cells and other cell sources (immune cells, fibroblasts, endothelial cells) can 
also contribute to kidney injury.
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TGF-β activation and extracellular matrix production [81]. Consistent with this, sEVs 
enriched with TGF-β released by cells exposed to hypoxia or high glucose are implicated 
in the development of renal fibrosis [82–84]. In addition, other studies have also reported 
EV signaling contributing to other pathological processes such as ROS production [85] 
and epithelial-to-mesenchymal transition [70, 84]. Lastly, the cross-talk between kidney 
and immune cells promoted by EV signaling has also been recognized as an important 
factor associated with renal tubulointerstitial inflammation. In vitro studies demonstrated 
that lEVs and sEVs released by immune cells stimulate the production of inflammatory 
mediators by podocytes and epithelial tubule cells, respectively [86, 87]. The work of Lv 
et al. (2018) demonstrated that tubule-derived sEVs are packed with cytokine associated 
mRNAs in AKI and CKD experimental models. In addition, the group observed an increase 
in CCL2 expression within sEVs from cells exposed to albumin-induced inflammation, which 
then induced an up-regulation of inflammatory makers by macrophages [80]. Consistent 
with this, urinary exosomal CCL2 mRNA is significantly associated with proteinuria in IgA 
nephropathy patients [41].

EVs and kidney repair
It is important to emphasize that intercellular communication promoted by EVs are not 

always deleterious. In this regard, pioneering studies investigating the therapeutic potential 
of stem cells in kidney disease consistently observed that treatment with different types of 
progenitor cells (or their conditioned media) could ameliorate kidney function, however, 
the mechanisms involved in the recovery were not well understood [88–90]. As EVs became 
increasingly recognized as bioactive mediators of horizontal communication between 
cells, the role of progenitor cell-derived EVs in kidney regeneration was investigated. 
Several studies have reported that EVs released by different types of progenitor cells (e.g. 
mesenchymal stromal cells, endothelial cells, liver and kidney stem cells, adipose cells) were 
involved in tissue repair, cellular recovery and reduction of apoptosis [12, 91–94]. In Fig. 3, 
the protective role of EVs delivered by progenitor cells during kidney injury is illustrated.

The beneficial effects promoted by EVs in kidney disease have been reported in 
experimental models of AKI, CKD and DN as summarized in Table 2. Biodistribution 
experiments from two studies demonstrated that mesenchymal stem cell (MSC)- and 
endothelial progenitor cell-derived EVs are significantly increased in kidney tissue during 
AKI, accumulating within endothelial and injured tubular cells at 2h after I/R [95, 96]. In 
control animals, MSC-derived EVs did not traffic specifically to the kidney [95, 96]. Similarly, 
Viňas et al. (2018) recently reported that sEVs can target to kidney cells at 30min and 4h 
after I/R and transfer miR-486-5p to glomerular, tubular and endothelial cells. CXCR4/
SDF-1α was observed to be involved in sEV uptake, microRNA transfer and improvement 
of kidney function during ischemic conditions [97]. Despite increasing evidence, additional 
in vivo studies are needed to clarify mechanisms of action and relative efficacy of sEVs from 
various origins in promoting kidney repair.

In summary, EVs are not only promising biomarkers of kidney disease, but active 
contributors to both pathogenesis and recovery. Importantly, as reviewed in this section, 
the health status of the donor cell directly impacts EV signaling. The cellular effects can be 
either beneficial, or deleterious, depending on whether the donor cells are injured or not. 
However, how and when the switch of the EV content during disease state happens, remains 
unclear. Moreover, progenitor cell-derived sEVs are associated with cellular recovery but lEVs 
have been reported to promote beneficial [98, 99] and deleterious effects [93, 100] during 
disease conditions. Thus, this it may not simply be a case of “small EV= good” and “large EV 
= bad”? Further study will be necessary to gain a greater appreciation for the role of EVs 
in intercellular communication in the kidney and the impact of disease on this. Finally, EV 
size categorization studies have shown that different molecular signatures can be observed 
according to sEV size [101, 102]. Even EVs within the same “category” (i.e. sEVs or lEVs) can 
be sub-categorized according to size, and this can directly impact the effect promoted by EVs 
in recipient cells [101, 102]. This challenges the current classification of major EV subtypes.
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Applications of EVs in kidney health and disease

Methodological aspects
Studies on the EV field substantially increased in the last decade, and different 

approaches to isolate EVs have been described in the literature. EVs can be isolated and 
characterized from a host of sources. These include, but are not limited to, urine, serum, 
dialysate, cerebrospinal fluid, synovial fluid, bronchoalveolar lavage fluid, breast milk, 
bile, and saliva [18, 103–113]. Moreover, new technologies are constantly emerging that 
claim to increase the efficacy for EV detection and its applicability to clinical practice [114, 
115]. In this regard, appropriate use of methods for EV isolation and measurement (and 
adequate reporting of the methods used) is critical to our understanding of EVs in kidney 
physiology and pathology. Recently, the EV scientific community has advocated for improved 
reporting practices [116]. Further, the International Society for Extracellular Vesicles 
(ISEV) recently published a comprehensive guideline (MISEV2018) which highlights pre-
requisites to validate EVs as biomarkers in different scenarios [117]. Each isolation method 
has advantages and disadvantages in terms of purity and enrichment of EVs. The decision of 
which technique to use is left to the investigator who must consider the focus of research, 
type of sample, disease and, ultimately, the requirements for downstream analysis (single EVs 
analysis, functional analysis or content analysis). For a complete review of methodologies for 
EV isolation and characterization readers are directed to Islam et al. (2019), Coumans et al. 
(2017), Giebel & Helmbrecht (2017), and Momen-Heravi et al. (2017) [118–121].

Fig. 3. Extracellular vesicles delivered by progenitor cells contribute to recovery of kidney injury. Previous 
studies have demonstrated that progenitor cell-derived EVs can promote beneficial effects and attenuate 
kidney injury, which includes inhibition of apoptosis, mitochondrial stress, oxidative stress, inflammation, 
endothelial dysfunction and fibrosis. Furthermore, these EVs can stimulate cellular proliferation and 
angiogenesis and contribute to kidney repair.
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Table 2. Summary of studies investigating protective effects of extracellular vesicles in renal cellular 
recovery and kidney disease. Arrows indicate paracrine signaling promoted by EVs. AA = aristolochic acid; 
ADSCs = adipose-derived stem cells; ADMSCs = adipose-derived mesenchymal stem cells; AKI = acute kidney 
injury; Ang II = angiotensin II; BUN = blood urea nitrogen; CDCs = cardiosphere-derived cells; CKD = chronic 
kidney disease; Cr = creatinine (plasma or serum); CrCl = creatinine clearance; DN = diabetic nephropathy; 
ECs = endothelial cells; ECFCs = endothelial colony-forming cells; EMT = epithelial-mesenchymal 
transition; EndoMT = endothelial-to-mesenchymal transition; EPCs = endothelial progenitor cells; GCs = 
glomerular cells; GFR = glomerular filtration rate; GN = glomerulonephritis; HLSCs = human liver stem 
cells; I/R = ischemia-reperfusion; KMSCs = kidney mesenchymal cells; MetS = metabolic syndrome; MSCs 
= mesenchymal stromal cells; NGAL = neutrophil gelatinase-associated lipocalin; POD = podocytes; PTEN 
= phosphatase and tensin homolog; RAS = renal artery stenosis; RBF = renal blood flow; STCs = scattered-
like cells; TCs = tubular cells; TGFβ = transforming growth factor β; USCs = urine-derived stem cells; UUO = 
unilateral ureter obstruction; VEGF = vascular endothelial growth factor

KMSCs → ECs mRNA regulation, ↑ proliferation, ↑ angiogenesis

ADMSCs; MSCs, STCs → TCs miRNA regulation, mitochondria transfer, ↑ ATP, ↓ apoptosis, ↑ 
proliferation, ↓ oxidative stress

ADMSCs → ECs ↑ angiogenesis
EPCs → Mesangial cells ↑ complement inhibitors, ↓ apoptosis

ADSCs, USCs → POD miRNA regulation, ↓ apoptosis
ECFCs → ECs miRNA regulation, ↓ apoptosis, ↓ PTEN
MSCs → TCs ↑ VEGF

EPCs, MSCs → ECs, TCs ↓ apoptosis, ↑ proliferation, ↓ oxidative stress, ↑ angiogenesis
Wharton’s Jelly MSCs → TCs ↓ mitochondrial fragmentation, ↑ proliferation, ↓ fibrotic markers

MSCs → TCs ↓ apoptosis, ↑ proliferation, ↓ oxidative stress 
MSCs → TCs miRNA regulation, ↓ apoptosis, ↑ proliferation

β ADMSCs, MSCs → TCs ↓ fibrotic markers
β KMSCs → ECs ↑ proliferation, ↓ EndoMT
β → TCs ↓ EMT

MSCs → TCs, ↓ apoptosis; ↓ oxidative stress ↓ tubular injury, ↓ Cr and BUN
MSCs → TCs, ↓ apoptosis, ↓ tubular injury, ↓ Cr and BUN, ↑ s

→ TCs, ? ↑ proliferation, ↓ kidney lesions, ↓ Cr and BUN

ADMSCs → POD, TCs, ↓ inflammation, ↓ oxidative stress, recovery of POD integrity, 
↓ kidney lesions, ↓ fibrosis, ↓ Cr and BUN

ECFCs → GCs, TCs, ECs, ↓ inflammation, ↓ kidney lesions, ↓ Cr and BUN

→ ECs, TCs, ? ↓ apoptosis, ↑ proliferation, ↑ angiogenesis, ↓ inflammation, ↓ fibrosis,
↓ tubular injury, ↓ Cr and BUN

TCs → GCs, TCs, ECs, ?
↓ apoptosis, ↑ proliferation, ↓ inflammation, ↓ oxidative stress, ↓ fibrosis, 

↓ Cr and BUN ↓ CKD progression, ↑ s

Wharton’s Jelly MSCs → TCs,
↓ apoptosis, ↑ proliferation, ↓ inflammation,

↓ oxidative stress, ↓ endothelial dysfunction, ↓ fibrosis, ↓tubular injury,
↓ Cr and BUN, ↑ s

HLSC → ? ↑ proliferation, ↓ fibrosis, ↓tubular injury, ↓ Cr, ↑ body weight

MSCs → TCs, ? ↓ inflammation, ↓ fibrosis, ↓tubular injury, ↓ Cr, BUN and uric acid,
↓ proteinuria 

→ ECs, TCs, ? ↓ apoptosis, ↑ proliferation, ↓ inflammation, ↓ EndoMT, ↓ fibrosis

MSCs → TCs, ? ↓ EMT, ↓ inflammation, ↓ fibrosis, ↓tubular injury, ↓ Cr, BUN and
uric acid, ↓ proteinuria

CDCs → ? ↓ inflammation, ↓ fibrosis, ↓ NGAL, ↓ proteinuria  

ADSCs, USCs, MSCs → ↓ apoptosis, ↓ kidney lesions, ↓ 
↓ blood glucose, ↓ Cr and BUN

HLSCs, MSCs → ↓ fibrosis, ↓ kidney lesions, ↓ polyuria and albuminuria, ↓ Cr and BUN

EPCs → GCs, ECs, ? ↓ inflammation, ↓ endothelial injury, ↓ glomerular injury, ↑CrCl,
↓ 

MSCs → ? ↓ hypoxia, ↓ inflammation, ↓ fibrosis, ↑ GFR and RBF, ↓ Cr
STCs → ↑ renal perfusion, ↓ fibrosis, ↓ Cr
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Clinical perspectives
Given that EVs are measurable, specific and becoming well-studied, it is certainly 

feasible that they will ultimately be developed as new biomarkers of renal disease in clinical 
practice. Furthermore, their potential use as biological delivery systems are also an area of 
great interest. As mentioned above, in order for EVs to be reliable markers in clinical practice, 
they need to be easily obtained, quantified and characterized. This also needs to occur in a 
reasonably fast and affordable manner. As such, there are several groups studying the use of 
EVs in pre-clinical and clinical studies as they pertain to medical conditions including cancer, 
[122, 123] rheumatologic disease, [124] cardiovascular disease [125] and renal disease [2, 
13].

As biologically active biomarkers, EVs present a new and exciting opportunity. Regarding 
urinary EVs in particular, it is thought they can function as both endogenous communication 
links between renal cells and perhaps exogenous tools to protect against injury or promote 
recovery [2, 14, 91, 100]. Because it is easy and non-invasive to collect urine, using urinary 
EVs as markers is very clinically appealing. Fresh urine is ideal; [126] however, samples can 
be centrifuged and stored frozen, making batched analysis a viable option that would be 
clinically feasible. Nevertheless, numerous challenges remain and further information is 
needed with respect to normalization, optimal collection parameters, and an appreciation 
of the influence of protein aggregates, urine viscosity, pH and osmolality. As such one must 
be careful not to over-conclude based on our current knowledge. While the development of 
individual patient urinary EV proteomes or transcriptomes to diagnose renal conditions, or 
monitor disease progression is appealing, much is still not known about possible confounding 
variables. In this context, further “omic”-based studies should continue to elucidate specific 
changes in the expression EV-derived factors in kidney disease (i.e. exosomal derived-mRNAs 
and miRNAs) but also remain conscious of the need to ensure reproducibility.

Using EVs as clinical tools for delivering “cargo” was recently discussed in an ISEV-led 
white paper [127]. An example of this would be the ability of EVs isolated from human MSCs 
to protect against I/R injury following both acute and chronic kidney injury [91, 128]. As a 
singular example, one can see the importance of translating this finding to clinical practice. 
AKI remains a leading cause of morbidity and mortality among adult and pediatric patients, 
alike [129, 130]. This paper highlights several additional examples of clinically applicable 
uses for EVs in diagnosis of disease ranging from genetic disorders (i.e. exosomal NKCC2), 
water homeostasis defects (i.e. urinary EV-AQP2), and glomerular injury secondary to 
podocytopathies (i.e. podocyte-derived lEVs). Importantly, these conditions normally 
require serum testing and long wait times. Could urinary EVs facilitate a faster diagnosis 
and be employed as markers of disease severity or remission? At present, it is impossible to 
answer this, but it would appear this is a clinically important question to ask.

Our approach for this review was to highlight the potential of EVs as mediators of 
intercellular communication and biomarkers of kidney disease. The number of studies on 
the EV field is increasing substantially in the past few years, however there are still several 
unanswered questions. For example, to identify lEV’s cellular origin, a range of surface 
markers have been studied individually or at most in combination of two; however, it is 
unclear if the EV phenotype (density of specific markers) can change according the diseased 
condition. Therefore, a panel of markers for the same cellular origin in different scenarios 
should be performed. In the context of glomerulopathies, for example, the expression of 
podocyte markers in lEVs such as podocin, podocalyxin, nephrin and podoplanin; could vary 
according to the etiology and phenotype of glomerular disease.

We have also discussed EV-mediated interactions involved in both kidney 
pathophysiology and repair, however, the possible routes for EV signaling and how donor 
cells target different cells across the nephron require further study. Recent studies suggest 
that cells can communicate by EV delivery throughout urinary space (e.g. podocytes → 
proximal tubular cells), but we speculate that it may also be possible for mesangial and 
endothelial cells to transfer EVs in the vasa recta and promote “interstitial signaling”. Future 
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experimental studies performing renal punctures and isolation of mesangial-derived EVs 
could test this hypothesis.

Conclusion

In conclusion, this review summarizes some of the many applications for urinary EVs 
in clinical medicine. While assessment of EV levels and their content shows promise it is 
clear that we are only scratching the surface of our what is possible. Future studies should 
focus on standardization of methodology to facilitate adoption to routine clinical practice 
and further expanding our knowledge of EVs in kidney health and disease.
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