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Abstract
Background/Aims: Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and 
hormone with important physiological functions in many organs, including the intestine. We 
have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal 
epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a 
nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites 
to regulate physiological processes in the intestine including xenobiotic detoxification and 
immune modulation. We hypothesized that 5-HT activates AhR indirectly by interfering with 
metabolic clearance of AhR ligands by cytochrome P450 1A1 (CYP1A1). Methods: Inhibition 
of CYP1A1 activity by 5-HT was assessed in the human intestinal epithelial cell line Caco-
2 and recombinant CYP1A1 microsomes using both luciferase and LC-MS/MS. Degradation 
of 5-HT by recombinant CYP1A1 was measured by LC-MS/MS. For in vitro studies, CYP1A1 
and CYP1B1 mRNA expression levels were measured by RT-PCR and CYP1A1 activity was 
measured by ethoxyresorufin-O-deethylase (EROD) assays.  For in vivo studies, AhR ligands 
were administered to SERT KO mice and WT littermates and intestinal mucosa CYP1A1 mRNA 
was measured. Results: We show that 5-HT inhibits metabolism of both the pro-luciferin 
CYP1A1 substrate Luc-CEE as well as the high affinity AhR ligand 6-formylindolo[3,2-b] 
carbazole (FICZ). Recombinant CYP1A1 assays revealed that 5-HT is metabolized by CYP1A1 
in an NADPH dependent manner. Treatment with 5-HT in TRP-free medium, which is devoid 
of trace AhR ligands, showed that 5-HT requires the presence of AhR ligands to activate AhR. 
Cotreatment with 5-HT and FICZ confirmed that 5-HT potentiates induction of AhR target 
genes by AhR ligands. However, this was only true for ligands which are CYP1A1 substrates 
such as FICZ. Administration of β-napthoflavone by gavage or indole-3-carbinol via diet to 
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SERT KO mice revealed that lack of SERT impairs intestinal AhR activation. Conclusion: Our 
studies provide novel evidence of crosstalk between serotonergic and AhR signaling where 
5-HT can influence the ability of AhR ligands to activate the receptor in the intestine.

Introduction

The gastrointestinal (GI) tract is an important site of interface between the host and 
the environment. Of the many mechanisms that have evolved to respond to environmental 
stimuli at this barrier, the nuclear receptor aryl hydrocarbon receptor (AhR) has been 
recognized as one of the most crucial, as it binds a diverse array of ligands to serve a variety 
of physiological functions [1]. The prototypical gene targets for AhR are the cytochrome 
P450 family 1 (CYP1) enzymes including CYP1A1 [2]. Traditionally studied for its role in 
recognizing xenobiotics such as polycyclic aromatic hydrocarbons (PAHs) and facilitating 
their metabolism and elimination, AhR is now recognized to play important roles in cell 
proliferation and survival, as well as mucosal immune homeostasis [3]. In fact, AhR activation 
has been shown to promote mucosal healing and decrease intestinal inflammation in animal 
models of inflammatory bowel disease (IBD) including both DSS and TNBS-induced colitis 
[4-7]. Conversely, knockout of AhR specifically in intestinal epithelial cells has deleterious 
consequences on the outcome of experimental colitis [8].

AhR has evolved to recognize and bind a variety of molecules from both exogenous and 
endogenous sources. Benzo[a]pyrene and 3-methylcholranthene are environmental PAHs 
which were among the first ligands studied to bind AhR [9]. Another class of exogenous 
ligands are diet-derived ligands, which primarily consist of TRP-derived phytochemicals 
[10]. Most vegetables contain high levels of a TRP derivative called glucobrassicin, which 
is cleaved into the weak AhR ligand indole-3-carbinol (I3C) during mastication by plant-
derived myrosinase enzymes [11]. I3C is converted to high affinity AhR ligands including 3, 
3’-diindoylmethane (DIM) and indole [3, 2-b]carbazole (ICZ) as a result of exposure to the 
acidic environment of the stomach. 6-formylindolo[3, 2-b]carbazole (FICZ), which is very 
similar in structure and AhR binding affinity to ICZ, is proposed to be the major endogenous 
ligand for AhR [12]. Other endogenous ligands include both bacteria-derived indoles and 
condensation products of 
the TRP-derived metabolite 
kynurenine [13, 14].

The AhR signaling 
pathway is tightly controlled by 
an intrinsic negative feedback 
mechanism. More precisely, 
AhR ligands facilitate their 
own degradation by inducing 
expression and activity of the 
AhR gene target CYP1A1 (Fig. 
1) [15, 16]. In accordance with 
this mechanism, FICZ is both a 
high-affinity AhR ligand as well 
as an excellent substrate for 
CYP1A1 [17]. Overexpression 
of CYP1A1 leads to increased 
AhR ligand degradation 
and reduced AhR activity 
[16]. Conversely, inhibition 
of CYP1A1 activity leads to 
decreased ligand inactivation 
and heightened activation 
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Fig. 1. Ligand degradation by CYP1A1 as a negative feedback 
mechanism for AhR signaling. After a ligand binds AhR, AhR 
translocates to the nucleus and induces transcription of CYP1A1 
mRNA and an increase in CYP1A1 enzymatic activity. This increased 
CYP1A1 degrades AhR ligands into inactive metabolites in order to 
terminate AhR signaling [15, 16].

 

 

Figure 1 
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of the AhR pathway [15]. This has fueled the hypothesis that there may be endogenous 
inhibitors of CYP1A1 enzymatic activity that could increase AhR activation by preventing 
the degradation of its ligands.

We have recently shown that serotonin (5-hydroxytryptamine, 5-HT) is able to activate 
AhR [18]. 5-HT is a TRP-derived neurotransmitter and hormone that has diverse physiological 
roles in several body systems including the nervous system and the GI tract. In the gut, 5-HT 
promotes motility [19], modulates electrolyte and fluid transport [20-22], and participates 
in neural reflexes [23, 24]. Activation of AhR by 5-HT is independent of the membrane-
bound family of 5-HT receptors, but rather is dependent upon intracellular transport via 
the plasma membrane 5-HT transporter (SERT) [18]. In the gut mucosa, SERT functions 
to regulate the extracellular availability of 5-HT by facilitating high-affinity transport into 
enterocytes and other cell types [25]. Once inside the cell, intracellular monoamine oxidases 
are able to act upon 5-HT to facilitate conversion to 5-hydroxyindole-3-acetic acid (5-
HIAA) [26]. Dysregulation of the 5-HT system has been demonstrated to play a role in the 
pathophysiology of gut disorders including IBD. Interestingly, expression of mucosal SERT 
is decreased in experimental colitis [27, 28] as well as in IBD patients [29-32]. Conversely, 
SERT KO mice which lack high affinity transport of 5-HT into the intracellular compartment 
are more susceptible to intestinal inflammation [33, 34].

While we have previously established 5-HT as an endogenous activator of AhR, the 
precise mechanism of 5-HT-dependent AhR activation was unclear. Here, we report that 
5-HT activates AhR indirectly via inhibition of CYP1A1 enzymatic clearance of AhR ligands 
using cell-free models and the human intestinal epithelial cell line Caco-2. Further, we show 
that SERT KO mice have an impaired response to exogenously administered AhR ligands. Our 
findings support a new role for gut-derived 5-HT as a key regulator of AhR ligand availability 
and receptor activation.

Materials and Methods

Materials
Serotonin (5-HT) hydrochloride, indole, 3-methylindole (3-MI), tryptamine hydrochloride (TRYPT), 

ɑ-naphthoflavone (ɑ-NF), β-naphthoflavone (β-NF), 5-hydroxyindoleacetic acid (5-HIAA), L-tryptophan 
(TRP), indole-3-carbinol (I3C), 2,3,7, 8-Tetrachlorodibenzo-p-dioxin (TCDD), and indole-3-acetic acid 
(IAA) were obtained from Sigma. 6-formylindolo [3, 2b]carbazole (FICZ) was obtained from Tocris. 
7-ethoxyresorufin and indolo [3, 2b]carbazole (ICZ) were obtained from Santa-Cruz. TRP was recrystallized 
from 70% boiling ethanol in water and the crystals were collected and washed in absolute ethanol under 
vacuum prior to use in order to remove residual FICZ. Caco-2 cells, Eagle’s minimum essential medium 
(EMEM), and 0.25% trypsin-EDTA were obtained from American Type Culture Collection (ATCC). 
Fetal bovine serum (FBS) was purchased from Gibco. Penicillin and streptomycin were purchased from 
Invitrogen. Cell culture flasks, cell culture plates, CYP1A1 microsomes, negative control insect microsomes, 
and 1X phosphate buffered saline (PBS) were purchased from Corning. TRP-free medium as a custom 
formulation was purchased from AthenaES. LC-MS vials, LC column, and LC column guards were purchased 
from Phenomenex. All solvents used for LC-MS/MS were of LC-MS grade and were purchased from Fisher. 
TRIzol was also purchased from Fisher. NADPH regeneration system, luciferase assay, and CYP1A1 P450-
Glo assay kits were purchased from Promega. The Bradford assay kit was purchased from Biorad. Brilliant 
SYBGR green qPCR master mix kit was purchased from Stratagene.

Animals
SERT KO heterozygous mice were purchased from Jackson Laboratory and bred in-house. The mice 

were housed in autoclaved polypropylene cages with corncob bedding. The mice had free access to food 
(Teklad Irradiated LM-485 Mouse/Rat Diet 7912, Envigo) and water and a 12 h light/dark cycle. For β-NF 
experiments, 3-month old male WT and SERT KO littermates were administered 50 mg/kg β-NF in corn 
oil by gavage daily for 3 days prior to euthanasia. For I3C studies, 3-month old male and female mice were 
fed AIN-76A synthetic diet or AIN-76A with 200 ppm I3C for 3 weeks (Research Diets). After euthanasia, 
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intestines were immediately resected and separated into jejunum, ileum, and colon. Mucosa was scraped 
and flash frozen in liquid nitrogen and stored at -80°C for RNA extraction and protein lysate preparation. 
Liver and lung were resected and immediately flash frozen in liquid nitrogen and stored at -80°C until RNA 
extraction. All animal studies were performed in accordance with institutional guidelines and regulations 
and as approved by the Animal Care Committees of the University of Illinois at Chicago and the Jesse Brown 
Veterans Affairs Medical Center.

Cell Culture
Caco-2 cells were grown routinely in EMEM supplemented with 10%. All cell culture medium used for 

maintenance contained 100 IU/mL penicillin and 100 μg/mL streptomycin. Caco-2 cells were maintained 
in 5% CO2-95% air at 37°C. Cells were maintained in 75 cm2 or 150 cm2 flasks and were split using 0.25% 
trypsin-EDTA. In preparation for treatment and uptake experiments, Caco-2 cells were plated on 24-well 
plates on plastic supports at a density of 2 x 104 cells/well. Caco-2 cells were maintained 10-14 d post-
plating to allow differentiation before treatments were performed for all experiments unless indicated. Cells 
between passages 25 and 45 were used for all experiments. All treatments were given in serum-free EMEM 
unless otherwise indicated. All cells treated in TRP-free medium were switched from complete medium to 
TRP-free medium for 1 h prior to the start of treatment. All solutions containing 5-HT, ICZ, or FICZ were 
protected from light.

RNA Extraction and Real Time RT-PCR
RNA was extracted from cells or mouse tissue using TRIzol  according to the manufacturer’s 

instructions. Quantitative RT-PCR was performed using SYBR Green fluorescence by reverse-transcribing 
and amplifying equal amounts of RNA using the Brilliant SYBGR green qPCR master mix kit. The gene-
specific primer sequences are listed in Supplementary Table S1 (for all supplemental material see www.
cellphysiolbiochem.com). The relative mRNA levels were normalized to GAPDH mRNA levels using the ∆Ct 
method.

Ethoxyresorufin-O-deethylase (EROD) Assay
The CYP1A1-dependent ethoxyresorufin-O-dethylase (EROD) activity of Caco-2 cells was assayed by 

first treating the cells with 5-HT for FICZ in serum-free media for the indicated time point. The treatment 
media was removed and washed with 1X PBS before 300 µl of 50 mM NaHPO4 pH 8.0 containing 2 mM 
7-ethoxyresorufin was added to each well of a 24-well plate. The cells were incubated at 37°C for 20 min 
before termination of the reaction by removal of the medium. Medium was transferred to a 96-well plate 
and formation of resorufin was quantified on a multiwell plate reader in triplicate with the excitation/
emission wavelengths of 544/590. The activity was expressed relative to the amount of protein present as 
determined by Bradford assay according to the manufacturer’s protocol.

P450-Glo CYP1A1 Activity Assay
For cell-based assays, Caco-2 cells were plated at low density and allowed to differentiate in 24-well 

plates as described above. Cells were pretreated for 30 min in serum-free EMEM with vehicle, 5-HT, or ɑ-NF 
for 30 min before incubation with each test compound along with 50 µM Luc-CEE pro-luciferin CYP1A1 
substrate for 3 h. Media was collected and combined with an equal volume of luciferin detection reagent and 
incubated at room temperature for 20 min. Luminescence was recorded using a single tube luminometer 
(Promega), and a no-cell control was subtracted from each measurement to account for background. 
Relative CYP1A1 activity was taken as the luminescence after incubation of each test compound divided by 
the luminescence after incubation with vehicle. The activity was expressed relative to the amount of protein 
present as determined by Bradford assay according to the manufacturer’s protocol.

For cell-free assays, microsomes containing recombinant human CYP1A1 expressed in baculovirus 
infected insect cells (BTI-TN-5B1-4) were used. Reactions (final volume 50 ml) were performed in triplicate 
and contained 0.5 pmol CYP1A1, 100 mM KPO4 (pH 7.4), 30 µM Luc-CEE, varying concentrations of test 
compounds ranging from 1 M to 1 mM, and NADPH regeneration system components 1.3 mM NADP+, 
3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, and 0.4 U/mL glucose-6-phosphate dehydrogenase. All 
components except the NADPH regeneration system were combined (25 ml) and pre-incubated at 37°C for 
10 min in 1.5 mL tubes. The reactions were initiated by adding an equal volume of 2X NADPH regeneration 
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system (25 ml, also pre-incubated at 37°C) and placed at 37°C for 10 min. Reactions were terminated by the 
addition of luciferin detection reagent (50 ml) and incubated at room temperature for 20 min. Luminescence 
was recorded using a single tube luminometer, and a control without NADPH was subtracted from each 
measurement to account for background. CYP1A1 activity was taken as the percentage of the luminescence 
after incubation with vehicle.

FICZ Metabolism Assay
Caco-2 cells were split at low density (1:8) into 150 cm2 flasks and allowed to differentiate for two 

weeks. At the start of the assay, flasks were incubated with 5-HT (5 µM), ɑ-NF (5 µM), or vehicle for 30 min. 
Next, cells were incubated with 50 nM FICZ along with test compounds for 30 min to allow for intracellular 
accumulation. FICZ-containing medium was removed, cells were washed with warm 1X PBS, and cells were 
incubated with test compounds for 2 h. Cells were washed with ice-cold 1X PBS, scraped in ice-cold 1X PBS 
(N2 purged), and centrifuged for 10 min at 500 G. 1X PBS was removed and 750 ml of cold acetonitrile (N2 
purged) was added to each cell pellet. Cells were sonicated and centrifuged for 10 min at 10,000 G to pellet 
precipitated protein and the extract was added to a new tube. Extracts were evaporated under N2 and dried 
samples were analyzed immediately by LC-MS/MS.

Recombinant CYP1A1 Reactions
Microsomes containing recombinant human CYP1A1 expressed in baculovirus infected insect cells 

(BTI-TN-5B1-4) and negative control microsomes isolated from baculovirus infected insect cells (BTI-TN-
5B1-4) were used. Reactions (final volume 50 ml) were performed in duplicate and were carried out either 
in the presence or absence of NADPH. All reactions contained 2 pmol CYP1A1 or an equivalent amount of 
control microsomal protein, 100 mM KPO4 (pH 7.4), and 1 µM 5-HT. Reactions with NADPH also contained 
NADPH regeneration system components 1.3 mM NADP+, 3.3 mM glucose-6-phosphate, and, 0.4 U/mL 
glucose-6-phosphate dehydrogenase. Reactions without NADPH were supplemented with 3.3 mM MgCl2 

instead. All components except the NADPH regeneration system or MgCl2 were combined (25 ml) and pre-
incubated at 37°C for 10 min in 1.5 mL tubes. The reactions were initiated by adding an equal volume of 2X 
NADPH regeneration system or 6.6 mM MgCl2 (both 25 ml, also pre-incubated at 37°C) and placed at 37°C for 
the indicated time points. Reactions were terminated by adding 350 ml of ice-cold acetonitrile (N2 purged) 
and vortexing briefly. Samples were centrifuged at 10, 000 G for 5 min to pellet down microsomes and 350 
ml of extract was transferred to a new tube. Extracts were evaporated under N2 and dried samples were 
stored at -80°C until analysis by LC-MS/MS.

LC-MS/MS measurements
Samples were reconstituted in 100 ml water/acetonitrile/formic acid (99/1/0.1 (v/v)) (N2 purged), 

vortexed, and added to LC vials. Samples were measured by LC-MS/MS using an Agilent 1200 Series HPLC 
coupled to an AB Sciex QTRAP 5500. Samples (5 ml) were injected on a 100 x 2.1 mm Luna® Omega PS C18 
column with 5-mm silica particles equipped with a 4 x 2.0 mm C18 guard column. The column temperature 
was set to 40°C. 5-HT, 5-HIAA, and TRP were separated using an increasing gradient of acetonitrile created 
by solvent A as water with 0.1% formic acid and solvent B as acetonitrile with 0.1% formic acid at a flow 
rate of 400 l/min with a 3 min equilibration at 97% solvent A prior to injection. FICZ was separated using 
the same solvent system with an increasing gradient from 50% solvent B to 100% solvent B at a flow rate 
of 400 µl/min with a 2.5 min equilibration at 50% solvent B prior to injection. 5-HT was measured using LC 
method 1 (Supplementary Table S2), TRP and 5-HIAA was measured using LC method 2 (Supplementary 
Table S3), and FICZ was measured using LC method 3 (Supplementary Table S4). For detection of 5-HT, 
5-HIAA, and TRP, the mass spectrometer was operated in electrospray ionization positive mode (ESI+) 
with multiple reaction monitoring (MRM). For detection of FICZ, the mass spectrometer was operated in 
electrospray ionization negative mode (ESI-) with MRM. Parameters for MRM are given in Supplementary 
Table S5. The abundance of analyte was determined by measuring peak area.
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Statistics
For all experiments, 1-way or 2-way ANOVA followed by Tukey’s, Dunnett’s, or Bonferroni’s multiple 

comparisons test, or 2-tailed unpaired or paired Student’s t-test were utilized for statistical analysis as 
indicated with alpha set to 0.05. Values are means ± SEM and all experiments were performed in at least 
triplicate on ≥ 3 separate occasions. IC50 values were determined by plotting log[inhibitor] vs. luciferase 
activity and determining the concentration which gives half of the maximum activity, assuming a Hill slope 
of -1.0. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 for comparisons as indicated. Analyses were 
performed using GraphPad Prism (Prism 8).

Results

5-HT Interferes with CYP1A1 Activity
We first investigated the potential of 5-HT to interfere with basal CYP1A1 enzymatic 

activity in model intestinal epithelial cell line Caco-2. When Caco-2 cells were co-incubated 
with the pro-luciferin CYP1A1 substrate Luc-CEE (50 μM) and increasing concentrations of 
5-HT (5 - 500 μM), the measured basal CYP1A1 activity determined by Luc-CEE conversion 
to luciferin was dramatically decreased (>90% inhibition at 5 μM) (Fig. 2A). The compound 
ɑ-naphthoflavone (ɑ-NF), an established CYP1A1 inhibitor, was used as a positive control for 
CYP1A1 inhibition. At 5 μM, ɑ-NF completely blocked basal CYP1A1 activity. The ability of 

Fig. 2. 5-HT inhibits CYP1A1 
activity. (A) Caco-2 cells were 
plated at low density and allowed to 
differentiate for 10-14 d in medium 
containing 10% serum before the 
assay was performed. Cells were 
co-incubated with 50 μM Luc-CEE 
and either vehicle (veh), 5-HT 
(5 – 500 μM), or ɑ-NF (5 μM) for 
3 h in serum-free medium before 
measurement of luciferase activity 
(n = 3-4). Data represent the 
relative CYP1A1 activity measured 
as luciferase activity detected 
in the medium after incubation 
relative to the vehicle treated cells. 
Assays were performed using 
triplicate wells for each treatment 
and values were normalized to 
total protein by Bradford assay. 
Data analyzed by 1-way ANOVA 
followed by Dunett’s multiple 
comparison’s test. ****P<0.0001 
(B) Caco-2 cells were split at low density into 150 cm2 flasks and grown for 2 weeks before the assay was 
performed. Cells were loaded with 50 nM FICZ for 30 min and intracellular FICZ levels were measured by 
LC-MS/MS 2 h after removal of FICZ in the presence or absence of vehicle, 5-HT (5 μM), or ɑ-NF (5 μM). 
Intracellular FICZ levels were normalized to intracellular TRP levels also determined by LC-MS/MS and 
values are expressed as a percentage of initial FICZ measured at 0 h (n = 3). Data analyzed by 1-way ANOVA 
followed by Dunett’s multiple comparison’s test. **P<0.01, ****P<0.0001 vs. cells incubated with vehicle 
(C) NADPH-dependent metabolism of Luc-CEE (30 μM) by recombinant CYP1A1 (10 nM) was measured in 
presence or absence of ɑ-NF or TRP metabolites 5-HT, tryptamine (TRYPT), 5-hydroxyindoleacetic acid (5-
HIAA), or indole-3-acetic acid (IAA) (1 – 1000 μM) at 37°C for 10 min. Assays were performed in triplicate 
and values were normalized to activity in the presence of vehicle (n = 3).
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5-HT and ɑ-NF to inhibit degradation of FICZ (50 nM) by Caco-2 cells was also assessed. In 
accordance with the luciferase-based assay, 5-HT (5 μM) or ɑ-NF (5 μM) were able to prevent 
metabolism of FICZ (Fig. 2B).

In order to establish a direct effect of 5-HT on CYP1A1 enzymatic activity, a cell-free 
system consisting of recombinant CYP1A1 (10 nM) was used. 5-HT was able to inhibit 
metabolism of Luc-CEE (30 μM) in a concentration-dependent manner with an IC50 of 1.62 μM 
[95% CI interval, (1.12 μM, 2.34 μM)] for the assay (Fig. 2C). Tryptamine (TRYPT) inhibited 
CYP1A1 metabolism of Luc-CEE in a similar manner with an IC50 of 1.40 μM (0.95 μM, 2.06 
μM), while ɑ-NF inhibited Luc-CEE metabolism with an IC50 of 0.76 μM (0.41 μM, 1.41 μM). 
Interestingly, neither the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) or the AhR 
ligand indole-3-acetic acid (IAA) inhibited CYP1A1 metabolism of Luc-CEE suggesting that 
the carboxylic acid moiety is incompatible with CYP1A1 binding. These data are consistent 
with the idea that 5-HT, and not its downstream metabolite 5-HIAA, is able to interfere with 
CYP1A1 activity.

5-HT is Degraded by CYP1A1 Enzymatic Activity
To determine if interference of CYP1A1 activity by 5-HT is a consequence of 5-HT acting 

as a substrate for the enzyme or 5-HT being a non-substrate inhibitor, 5-HT (1 μM) was 
incubated with recombinant CYP1A1 (40 nM) and the relative abundance of 5-HT in the 
reaction mixture was measured by LC-MS/MS over 1 h. 5-HT rapidly disappeared from the 
reaction mixture with only ~20% of the initial 5-HT remaining after 15 min of incubation 
and nearly all 5-HT depleted from the reaction after 1 h of incubation (Fig. 3A). To confirm 
that 5-HT is not being metabolized by any native enzymes in the microsomal preparation, 
the assay was repeated using negative control microsomes. In contrast to the recombinant 
CYP1A1 microsomes, there was no significant NADPH-dependent metabolism of 5-HT in 
the control microsomes (Fig. 3B). Of note, no 5-HIAA was detected after 1 h of incubation 
with CYP1A1 in the presence of NADPH, confirming that 5-HT is not converted to 5-HIAA by 
CYP1A1 (Fig. 3C).

5-HT Requires the Presence of AhR Ligands to Induce CYP1A1
We have shown previously that 5-HT is able to induce CYP1A1 expression in commercial 

cell culture medium [18], which contains picomolar levels of FICZ formed from TRP in the 
medium, even when protected from light [15, 35]. In order to examine if 5-HT is able to 
induce CYP1A1 in the absence of trace AhR ligands, Caco-2 cells were treated with 5-HT 
(10 μM) in commercial Eagle’s Essential Minimum Medium (EMEM) or TRP-free EMEM for 
8 h. 5-HT was able to induce CYP1A1 mRNA (Fig. 4A) and activity as measured by EROD 
assay (Fig. 4B) in commercial medium, but did not induce CYP1A1 in TRP-free medium. 
Additionally, CYP1A1 induction by exogenously added FICZ (10 nM) was identical in both 
commercial and TRP-free medium. In order to rule out that the absence of TRP itself was 
responsible for this effect, the experiment was repeated with fresh recrystallized TRP added 
to the TRP-free medium immediately prior to use. The results of this experiment were 
identical to those when no TRP was added (Fig. 4C). These data strongly indicate that 5-HT 
requires the presence of trace AhR ligands in cell culture medium in order to induce CYP1A1.

5-HT Potentiates AhR Activation by CYP1A1-Substrate AhR Ligands
Since 5-HT was able to prevent degradation of FICZ (Fig. 2B), we next examined whether 

simultaneous addition of 5-HT and FICZ to the TRP free medium will induce transcription 
of AhR target genes. Caco-2 cells were treated with 5-HT (10 μM) along with FICZ (5 nM). At 
both 12 h and 24 h, 5-HT was able to potentiate transcription of both CYP1A1 and CYP1B1 by 
FICZ (Fig. 5A and B). A similar pattern was observed with ɑ-NF (1 μM). To confirm that 5-HT 
and ɑ-NF were acting through the same mechanism, namely CYP1A1 inhibition, Caco-2 cells 
were treated with FICZ (5 nM) along with 5-HT (5 μM) and ɑ-NF (5 μM) simultaneously for 
16 h. There was no further augmentation of CYP1A1 mRNA induction by 5-HT compared to 
ɑ-NF alone, suggesting that both molecules work through the same pathway (Fig. 5C).
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2, 3,7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-described high affinity AhR ligand 
that is not a substrate of CYP1A1 [36]. As expected, TCDD treatment (10 nM) dramatically 
induced CYP1A1 expression in Caco-2 cells after 24 h (Fig. 5D). To examine whether 5-HT is 
able to augment AhR activation by TCDD in a similar manner as FICZ, Caco-2 cells were treated 
with either 10 nM FICZ or TCDD along with increasing concentrations of 5-HT (1 - 1000 μM). 
In accordance with our previous results, 5-HT was able to enhance CYP1A1 mRNA induction 
by FICZ (Fig. 5E). However, 5-HT had no effect on CYP1A1 mRNA induction by TCDD. Of note, 
many indole-derivatives which are AhR agonists are actually partial agonists, and attenuate 
induction by the full agonist TCDD [37] (Supplementary Fig. S1). This phenomenon was not 
observed with 5-HT. These results are consistent with the finding that 5-HT augments AhR 
activation by AhR ligands which are also CYP1A1-substrates, without affecting activation by 
ligands which are not metabolized by CYP1A1.

Fig. 3. 5-HT is metabolized by CYP1A1 and is not converted to 5-HIAA. Human recombinant CYP1A1 
(40 nM) (A) or negative control microsomes (B) were incubated with 5-HT (1 μM) and 5-HT levels in the 
presence of absence of co-factor NADPH was measured by LC-MS/MS at the indicated time points (0 – 60 
min). Data are shown as the percentage of 5-HT at the indicated time point relative to 0 min. Representative 
chromatograms showing the 5-HT peak over time in the presence of NADPH are also shown (n = 3). (C) 
5-HIAA was measured in the reaction mixture after 60 min in the presence of NADPH (blue) and a 100 nM 
5-HIAA standard was also measured (red).
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Activation of AhR by Orally Administered AhR Agonists is Impaired in SERT KO Mice
We previously showed that SERT is necessary for 5-HT dependent activation of AhR both 

in vitro and in vivo, presumptively by allowing 5-HT to accumulate intracellularly [18]. SERT 
KO mice lack high affinity transport of 5-HT into the intracellular compartment [38]. Based 
upon our in vitro findings that 5-HT is interfering with CYP1A1 metabolism of AhR ligands, 
we hypothesized that SERT KO mice would be able to metabolize exogenously administered 
AhR ligands more rapidly, leading to impaired activation of AhR by these ligands.

β-naphthoflavone (β-NF) is a high-affinity synthetic AhR ligand [39] that is a CYP1A1 
substrate [40] and has also been shown to decrease the severity of DSS-colitis [4]. In order 
to determine whether 5-HT is able to affect activation of AhR by AhR ligands in vivo, we 
administered β-NF to WT and SERT KO by gavage (50 mg/kg/day in corn oil, 3 days). In WT 
mice, β-NF induced intestinal Cyp1a1 mRNA ~100-fold in jejunum and colon, and ~50 fold in 
ileum whereas induction in SERT KO mice did not reach significance (Fig. 6A-C).

To complement the β-NF gavage studies, we examined the ability of indole-3-carbinol 
(I3C) to activate AhR in WT and SERT KO mice. Control mice were given AIN-76A, a synthetic 
diet devoid of phytochemicals that could potentially activate AhR, and dietary I3C was given 
as 200 ppm in an AIN-76A background diet for 3 weeks. In jejunum, the I3C diet induced 
Cyp1a1 mRNA ~500-fold with no significant difference between WT and SERT KO (Fig. 
6D). In ileum and colon, Cyp1a1 mRNA was induced in WT mice ~50-fold and ~500-fold, 
respectively, with significantly less induction in SERT KO mice (Fig. 6E and F). Induction of 

Fig. 4. 5-HT requires the presence of 
trace AhR ligands to induce CYP1A1 
expression and activity. Caco-2 cells 
were plated at low density and 
allowed to differentiate for 10-14 d 
in medium containing 10% serum 
before treatments were performed. 
Cells were treated with 5-HT (10 
μM) or FICZ (10 nM) for 8 h in EMEM 
or TRP-free EMEM. CYP1A1 mRNA 
(A) was quantified by qPCR and 
CYP1A1 activity (B) was measured 
by the ethoxyresorufin-O-deethylase 
(EROD) assay (n = 3). EROD assays 
were performed using triplicate 
wells for each treatment and values 
were normalized to total protein by 
Bradford assay. Results are expressed 
as fold-change mRNA or activity 
relative to untreated cells in EMEM. 
(C) The experiment was repeated 
except recrystallized TRP was added 
to the TRP-free media immediately 
prior to treatment. CYP1A1 mRNA 
was quantified by qPCR and results 
are expressed as fold-change mRNA 
relative to untreated cells in EMEM 
(n = 3). Data analyzed by 2-way 
ANOVA followed by Dunnett’s 
multiple comparison’s test. **P<0.01, 
****P<0.0001 vs. untreated cells in 
the same media.
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Cyp1a1 mRNA in liver was modest in both WT and SERT KO mice with a ~2-4-fold increase 
after the I3C diet as compared to the control diet (Fig. 6G). Intriguingly, Cyp1a1 mRNA was 
induced ~12-fold in WT lung with no significant induction in SERT KO lung after the I3C diet 
(Fig. 6H).

Induction of CYP1A1 mRNA in Caco-2 cells with either β-NF (1 μM) or ICZ (50 nM), the 
high affinity AhR ligand formed from I3C in stomach acid, in TRP-free medium was enhanced 
in the presence of 5-HT (10 μM) (Fig. 7). Collectively, these results are consistent with a novel 
role for 5-HT in modulating the ability of exogenously administered AhR ligands to induce 
the expression of AhR target genes in vivo.

Fig. 5. 5-HT potentiates induction of AhR target genes by ligands which are CYP1A1 substrates. Caco-2 
cells were plated at low density and allowed to differentiate for 10-14 d in medium containing 10% serum 
before treatments were performed. (A and B) Cells were treated with vehicle (veh) or 5 nM FICZ in the 
presence of vehicle, 5-HT (10 μM), or ɑ-NF (1 μM) for 12 h or 24 h in TRP-free and serum-free medium. Data 
represent the relative expression of CYP1A1 (A) or CYP1B1 (B) mRNA quantified by qPCR as compared to 
time-matched vehicle cells (n = 3). (C) Cells were also treated with vehicle or 5 nM FICZ in the presence 
of vehicle, 5-HT (5 μM), ɑ-NF (5 μM), or 5-HT + ɑ-NF in combination (both 5 μM) for 16 h in TRP-free and 
serum-free medium (n = 4). Data analyzed by 1-way ANOVA followed by Tukey’s multiple comparisons test. 
(D and E) Cells were treated with vehicle (veh), FICZ (10 nM), or TCDD (10 nM) for 24 h in the presence of 
absence of 5-HT (1 – 1000 μM) in serum-free and TRP-free medium. (D) Relative CYP1A1 mRNA induction 
after FICZ or TCDD alone is expressed as fold-change over vehicle and (E) CYP1A1 mRNA expression in the 
presence of FICZ or TCDD with increasing concentrations of 5-HT expressed as percentage of induction 
without 5-HT. CYP1A1 mRNA was quantified by qPCR (n = 3-4). Data analyzed by Student’s unpaired t-test 
compared to vehicle treated cells (D) or 1-way ANOVA followed by Dunnett’s multiple comparisons test (E). 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. n.s. = not significant.
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Fig. 6. SERT KO mice have impaired AhR activation in response to exogenously administered AhR ligands. 
(A-C) WT and SERT KO mice were administered β-naphthoflavone (β-NF) by gavage (50 mg/kg) in corn oil 
once a day for 4 days. Total RNA was isolated from jejunal (A), ileal (C), or colonic (C) mucosal scrapings. 
Data represent the relative expression of Cyp1a1 mRNA quantified by qPCR (n = 4-6). (D-H) WT and SERT 
KO mice were placed on an AIN-76A synthetic diet with or without 200 ppm indole-3-carbinol (I3C) for 3 
weeks. Total RNA was isolated from jejunal (D), ileal (E), or colonic (F) mucosal scrapings as well as whole 
liver (G) and lung (H). Data represent the relative expression of Cyp1a1 mRNA quantified by qPCR (n = 
6-12). Data analyzed by 2-Way ANOVA followed by Tukey’s multiple comparison’s test. *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001 between groups as indicated. n.s. = not significant.
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Fig. 7. 5-HT potentiates CYP1A1 induction 
by β-NF and ICZ. Caco-2 cells were plated at 
low density and allowed to differentiate for 
10-14 d in medium containing 10% serum 
before treatments were performed. Cells 
were treated with 1 μM β-NF (A) or 50 nM 
ICZ (B) in the presence of 5-HT (10 μM) for 16 
h in TRP-free and serum-free medium. Data 
represent the relative expression of CYP1A1 
mRNA quantified by qPCR as compared to 
untreated cells (n = 4). Data analyzed by 
1-way ANOVA followed by Tukey’s multiple 
comparisons test. *P<0.05, ****P<0.0001 
compared to untreated cells or between 
groups as indicated.
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Discussion

The current study has delineated the molecular mechanism by which AhR is activated by 
5-HT. We provide evidence that 5-HT itself is not a ligand for AhR, but rather 5-HT modulatess 
activation of AhR by its ligands. We demonstrated that 5-HT is a CYP1A1 substrate that 
competes with AhR ligands for CYP1A1 degradation, preventing ligand deactivation and 
promoting sustained AhR signaling. Activation of AhR by both endogenous ligands such as 
FICZ and exogenous ligands such as β-NF were shown to be affected by 5-HT. Therefore, we 
have established a novel role of 5-HT as an endogenously produced modulator of the AhR 
signaling pathway.

Inhibition of CYP1A1 enzymatic activity by 5-HT was demonstrated in both a cell-based 
and in a cell-free system. Co-incubation of Caco-2 cells with the CYP1A1 substrate Luc-CEE 
showed that 5-HT dramatically decreases its metabolism at only 5 µM. This concentration 
is nearly identical to the local steady state 5-HT concentration at the surface of the murine 
ileal mucosa, providing evidence that inhibition can occur at physiologic concentrations of 
5-HT [41]. These data were corroborated by showing directly that 5-HT interfered with FICZ 
degradation in Caco-2 cells also at 5 µM. When metabolism of Luc-CEE using a recombinant 
system was assessed, it was found that both 5-HT and TRYPT similarly interfered with 
CYP1A1 activity with slightly less potency than ɑ-NF. The lack of inhibition by 5-HIAA and 
IAA provide further evidence that the inhibition observed is specific to 5-HT.

The observation of metabolism of 5-HT by CYP1A1, which we found to be central to 
the involvement of 5-HT in the AhR signaling pathway, has not been reported previously. 
However, it was found that the structurally-related melatonin is hydroxylated at the 
6-position by CYP1A1, CYP1A2, and CYP1B1 [42]. Therefore, we can hypothesize that the 
major product of CYP1A1 metabolism of 5-HT is 5, 6-dihydroxytryptamine (5, 6-DHT). While 
it is not detected in brain at baseline, endogenously formed 5, 6-DHT is detected in rat brain 
upon administration of monoamine oxidase inhibitors [43, 44]. It is very likely that 5-HT is 
able to interfere with CYP1A2 and CYP1B1 activity since the CYP1 family of enzymes have 
significant substrate overlap. Interestingly, a previous study provided evidence that 5-HT 
interferes with CYP1A2 metabolism by competing for phenacetin O-de-ethylation activity in 
liver microsomes [45].

Key evidence which suggests that 5-HT is not a ligand for AhR is the lack of induction in 
TRP-free medium, devoid of the low levels of FICZ found within routine cell culture medium 
[15, 35]. Many studies exist which assume that a compound which induces CYP1A1 mRNA or 
AhR reporter activity in vitro is an AhR ligand [46, 47]. Such studies should be complemented 
with experiments showing AhR activation in a system without AhR ligands to rule out indirect 
activation by inhibiting ligand clearance by CYP1A1 or otherwise. Addition of recrystallized 
TRP immediately prior to treatment did not alter the results, an important control since TRP 
depletion may affect cell viability or other cellular processes. The conclusion that 5-HT is not 
an AhR ligand is consistent with a prior study which performed an electrophoretic mobility 
shift assay for AhR binding and found that 5-HT failed to induce an AhR-dependent shift [48].

Transcription of AhR target genes by low concentrations of FICZ in TRP-free medium 
was significantly enhanced by co-treatment with 5-HT. This was true at both 12 h and 24 
h time points for both CYP1A1 and CYP1B1 mRNA. However, induction was much stronger 
at 12 h than 24 h. This might be due to excessive degradation of FICZ after 24 h, even in the 
presence of CYP1A1 inhibitors. Alternatively, AhR receptor levels could have decreased due 
to proteasomal degradation of the receptor following excessive activation [49]. Interestingly, 
only FICZ in the presence of 5-HT was able to induce CYP1B1 induction after 24 h. This 
provides evidence that transcription of some target genes may only occur in the setting 
of CYP1A1 inhibition under certain conditions, underscoring the importance of CYP1A1-
mediated ligand clearance in controlling AhR activation.

While SERT KO mice were utilized in our studies as a model with decreased intracellular 
5-HT, other implications of decreased SERT must be considered while interpreting our data. 
First, it might be predicted that SERT deficiency may decrease intracellular transport of other 
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molecules which may affect CYP1A1 expression [50]. However, we have shown previously 
that SERT overexpression does not affect CYP1A1 induction by several TRP-derived AhR 
ligands which suggests that the ability of SERT to modulate AhR activation is specific to 
5-HT [18]. Additionally, there may be a concern that altered intestinal transit resulting 
from SERT deletion could influence activation of AhR by orally administered AhR ligands 
by affecting their absorption. While SERT KO mice do exhibit altered GI motility patterns, 
there is no overall change in GI transit time [38, 51]. Lastly, one might speculate that other 
5-HT transporters may compensate for the absence of SERT in IECs. While several organic 
cation transporters (OCTs) are expressed in IECs are able to transport 5-HT with low affinity, 
uptake of radiolabeled 5-HT by intestinal mucosal tissues is observed only in WT mice but 
not in SERT KO [38]. Thus, OCTs on IECs likely prevent accumulation of extracellular 5-HT to 
toxic levels, but do not participate in normal clearance of 5-HT.

The extent of the differences in intestinal CYP1A1 induction in vivo was dependent 
upon the ligand administered. The synthetic ligand β-NF was administered by gavage 3 
consecutive days prior to sacrifice. In all segments of the intestine, CYP1A1 mRNA induction 
in SERT KO mice did not reach significance, whereas WT mice exhibited variable, yet 
significant, induction. Of note, the half-life of CYP1A1 mRNA was found to be ~2.4 h [52], 
which likely contributes to the high variability in CYP1A1 induction. While WT and SERT 
KO mice displayed differential AhR activation in response to the I3C diet, the differences 
were not as dramatic as was observed with β-NF gavage. In jejunum, there was no difference 
in CYP1A1 induction between WT and SERT KO mice. However, significant differences in 
CYP1A1 induction were observed in both ileum and colon. One of the reasons for these 
differences could be that I3C was given ab libitum for 3 weeks whereas β-NF was given as 
gavage for 3 days. Continuous activation of AhR during feeding could lead to more sustained 
CYP1A1 mRNA levels as opposed to the staggered activation by gavage. Another reason 
could be the nature of the ligands themselves. β-NF is an excellent CYP1A1 substrate [40] 
whereas I3C gets converted into ICZ and DIM which have variable rates of metabolism by 
CYP1A1 [53, 54].

While the modest induction of CYP1A1 in liver after the I3C diet was not different 
between WT and SERT KO mice, there was an attenuation of CYP1A1 induction in the lungs 
of SERT KO mice. While there are a few possible mechanisms which may explain this result, it 
is likely that ingested ligands reaching the circulation eventually made their way to the lungs. 
Lung tissue is known to express many components of serotonergic machinery, including 
SERT [25]. The lack of SERT within the lung epithelium in SERT KO mice could have led to 
impaired CYP1A1 induction due to enhanced ligand clearance.

Conclusion

In conclusion, we have found that 5-HT is a CYP1A1 substrate that competes with AhR 
ligands for CYP1A1 degradation, preventing ligand deactivation and promoting sustained 
AhR signaling. This knowledge enhances our understanding of both intrinsic regulation 
of AhR activation and 5-HT metabolism. Further, these findings also provide novel insight 
into how the serotonergic pathway may be exploited pharmacologically to modulate AhR 
signaling in diseases with altered AhR activation in the intestine.
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