Cellular Physiology	Cell Physiol Biochem 2020;54:1084	
and Biochemistry	DOI: 10.33594/00000290	© 2020 The Author(s) Published by Cell Physiol Biochem Press GmbH&Co. KG, Duesseldorf www.cellphysiolbiochem.com

Erratum	1
---------	---

In the original article by Yu, et al., entitled "Epigenetically-Regulated MicroRNA-9-5p Suppresses the Activation of Hepatic Stellate Cells via TGFBR1 and TGFBR2" [Cell Physiol Biochem 2017;43(6):2242-2252, DOI: 10.1159/000484303], the images of the Sirius Red Staining in Fig. 2G have been mistakenly selected during typesetting. The correct Fig. 2 is displayed below.

The authors confirm that all of the results and conclusions of the article remain unchanged, as well as the figure legend.

The authors sincerely apologize for this mistake.

Fig. 2. Effects of miR-9-5p on HSC activation *in vitro* and *in vivo*. LX-2 cells were treated with TGF-β1 for 24 h and then transfected with miR-9-5p mimics for 24 h. (A) miR-9-5p expression. (B) Cell proliferation detected by MTT. (C) α-SMA mRNA. (D) Col1A1 mRNA. (E) α-SMA protein. (F) Type I collagen. (G and H) Collagen deposits were analyzed by Sirius Red staining. Scale bars, 100 μm. (I) Hydroxyproline expression. (J) Cell proliferation detected by EdU. Each value is the mean ± SD of three experiments. **P*<0.05 compared with the control and **P*<0.05 compared with TGF-β1 or CCl₄ group.