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Abstract
Although ion channels are crucial in many physiological processes and constitute an important 
class of drug targets, much is still unclear about their function and possible malfunctions that 
lead to diseases. In recent years, computational methods have evolved into important and 
invaluable approaches for studying ion channels and their functions. This is mainly due to their 
demanding mechanism of action where a static picture of an ion channel structure is often 
insufficient to fully understand the underlying mechanism. Therefore, the use of computational 
methods is as important as chemical-biological based experimental methods for a better 
understanding of ion channels. This review provides an overview on a variety of computational 
methods and software specific to the field of ion-channels. Artificial intelligence (or more 
precisely machine learning) approaches are applied for the sequence-based prediction of 
ion channel family, or topology of the transmembrane region. In case sufficient data on ion 
channel modulators is available, these methods can also be applied for quantitative structure-
activity relationship (QSAR) analysis. Molecular dynamics (MD) simulations combined with 
computational molecular design methods such as docking can be used for analysing the 
function of ion channels including ion conductance, different conformational states, binding 
sites and ligand interactions, and the influence of mutations on their function. In the absence 
of a three-dimensional protein structure, homology modelling can be applied to create a 
model of your ion channel structure of interest. Besides highlighting a wide range of successful 
applications, we will also provide a basic introduction to the most important computational 
methods and discuss best practices to get a rough idea of possible applications and risks.
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Introduction

Ion channels are important membrane proteins that mediate fast electrical and chemical 
signalling by regulating passive ion transport across the cell membrane [1]. Ion transport 
takes place through a central pore as a common structural motif that is formed by four or five 
transmembrane helices of different subunits in most channels. A structural selectivity filter 
is used to distinguish the different ion species that can pass the pore. The change between 
the open and closed state is based on a conformational change that is mainly mediated by 
changes in the membrane potential (voltage-gated channels) or ligand-binding (ligand-
gated channels). In the latter case, channel activators stabilize the open conformational 
state and channel blockers stabilize the closed conformational state. In addition, channel 
blockers are known that bind to the central pore and block ion permeation. Fig. 1 shows 
the important features exemplary on a mammalian intermediate-conductance potassium 
channel (KCa3.1) channel. There are over 340 genes reported that encode for ion channels 
with important functions in a plethora of physiological functions. The importance of ion 
channels is underlined by many severe diseases (the channelopathies) that are described 
due to impaired and dysfunctional ion channels. Therefore, ion channels are also attractive 
drug targets. For a more detailed introduction into ion channels, we would like to refer to 
Ashcroft [1] and Hille [2] as starting points.

Although there are a number of chemical-biological based experimental methods to 
study the function of ion channels [4], the use of computational methods is equally important 
for a better understanding of ion channels and their involvement in (patho)physiology. 
With this review, we want to provide a broad overview about the successful application of 
computational methods in ion channel research, combined with basic introductions and best 
practices to get a rough idea of possible applications and risks. We will start with artificial 
intelligence/machine learning based approaches, that are used to identify and classify ion 
channels based on their protein sequence, and quantitative structure-activity relationship 
(QSAR) approaches for the analysis of small molecule ion channel modulators. This is 
followed by a structure-based section that describes the successful application of homology 
modelling, molecular dynamics (MD) simulation and molecular design methods for the 
analysis of ion channels. This section includes the analysis of ion conductance, different 
conformational and functional states, binding sites and ligand interactions, and the influence 
of mutations on ion channel function. We will also give a basic introduction and point out 
potential pitfalls of these methods.

Fig. 1. Exemplary illustration of important ion channel features using a KCa3.1 channel cryo-EM structure 
(pdb 6cnn [3]). a) A tetrameric ion channel (each subunit is coloured differently). b) Overview about the im-
portant feature of one subunit: Helix S5/S6 form the ion channel pore surrounded by membrane-embedded 
helices S1-S4. Helices HA/HB build the binding site for calmodulin which is important for activation. The 
channel gate regulates ion conductance, and the selectivity filter is responsible for ion specificity. c) Surface 
representation with clipped surface showing the inner channel pore.
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Artificial Intelligence in ion channel research

In the last decade, much progress has been made with regards to the application of 
artificial intelligence (AI) in image recognition and natural language processing [5, 6]. 
Although AI has already arrived in everyday life through applications such as voice recognition 
in mobile phones (e.g. Apple’s Siri), the term AI probably only became known to the general 
public after the AlphaGo software won against the world’s best professional go player [7].

This progress and the recent improvements have also reached natural sciences. For 
medicinal chemistry, AI is expected to be a game changer in the drug design and development 
process through a combination of and creative collaboration between the “mind and 
machine” [8]. Taking a closer look, artificial intelligence methods already play an important 
role in several different areas of drug design such as ligand- and structure-based screening 
or ADMETox (Adsorption, Distribution, Metabolism, Excretion and Toxicity) prediction, but 
also in the de novo design of new compounds or retro-synthesis prediction AI is applied 
[9]. More recently, an antibiotic was discovered using AI techniques [10]. Slowly, the first AI 
applications in the field of ion channels are also arriving and will be discussed in the context 
of this section.

The main driver of the success of AI is the subfield of Machine Learning (ML). As the 
name suggests, Machine Learning describes algorithms that are able to “learn” patterns from 
a given dataset, often in an iterative manner. This “knowledge” can be used to predict or 
classify data points not included in the original dataset. The distinction between ML and 
traditional statistical methods is not always a clear cut, as some methods are common in both 
domains. A general distinction is made by Bzdok et al. [11]. which states that “[s]tatistics draw 
population inferences from a sample, and machine learning finds generalizable predictive 
patterns”. Two benchmark studies comparing different machine learning algorithms on 
various chemical data sets show that not only the right choice of algorithm is important 
for a successful application but also the right kind of input influences the results [12, 13]. 
This fact is important, as overtime not only the algorithm but also the kind of input for ML 
methods on ion channels changed. In the following paragraphs, we give a brief introduction 
into the important machine learning methods and provide an overview of usages of ML for 
ion-channels. The presented methods will be analysed with a focus on the exact algorithms 
as well as input used.

The basics of machine learning for ion channel research

As previously stated, the choice of input is as important as the choice of the ML algorithm 
itself. In the following we briefly cover the input and most frequently used algorithms in 
more detail.

The reason why so much attention has to be paid to the input data is that ligands, as 
well as proteins, are not easily convertible to formats that are accessible for typical statistical 
models [14]. To understand why, one can look at the differences between chemical structures 
and images. Images are 2D collections of pixels ordered in a rectangular grid. Each pixel has 
a numeric value associated with it that measures the brightness or colour intensity. Thus, 
images are already ordered structures with assigned numeric values. Chemical structures, 
however, are much more complex as they are three-dimensional and flexible. Proteins as well 
as small molecules can exhibit conformational changes and there is no straightforward way 
of assigning atoms/amino acids numeric values. Additionally, most algorithms require the 
data to be represented by a single vector, so the challenge is to convert complex structures 
into a single line of values. For these reasons, the process of converting the biochemical data 
into a computer-readable format, sometimes called featurization, is a crucial step in setting 
up a machine learning model. Especially as the choice of the algorithm limits the choice of 
possible featurization and vice versa.
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Support Vector Machines
Support vector machines (SVM) are a relatively simple, yet powerful method suited for 

classification. SVMs aim to draw the most optimal decision boundary between two classes. 
This can be imagined as a (hyper) plane between the datapoints that separates both classes 
even in a high-dimensional space (see Fig. 2a). ‘Most optimal’ refers to the fact that SVMs 
maximize the distance between the datapoints and the decision boundary. Initial SVMs were 
only able to create linear decision boundaries, until Boser and colleagues [15] used the so-
called “Kernel-Trick” to allow for non-linear boundaries.

Random Forest
Random Forest (RF) [16, 17] is another machine learning algorithm, that can provide 

good results with relatively little training and tuning. The approach is based on decision 
trees. Decision trees combine decisions in a tree-like structure that allow the model to 
separate different datapoints based on specific properties. RFs work by combining the 
prediction of many different decision trees and where each decision tree is build based on a 
slightly different dataset. For this, a random set of datapoints is removed from the original 
dataset as well as a random set of input variables before building a new decision tree. This 
ensures that each tree has different data to work with and hence is built differently. To make 
the final predictions the mean over all predictions made by each decision tree is calculated 
(see Fig. 2b).

Neural Networks and Deep Learning
While neural networks have attracted much attention in recent years they have been 

in use for decades for chemical applications [18]. Neural Networks are based on the idea of 
neurons in the brain. Neurons can receive input of many neurons and combine them into a 
single output, which in return can be the input for another neuron. Artificial neural networks 
are built out of layers, each made up of neurons (see Fig. 2c). Each neuron is, in most cases, 
connected to all neurons of the next layer and forwards the input information to these next 
neurons. The initial layer is called the input layer, in which the original input is fed to. The 
input is then passed to the next layer called the hidden layer, lastly the hidden layer passes 
their output to the output layer. The output layer is the layer in which the prediction is made.

In artificial neural networks, so-called weights manage how inputs are passed from 
neuron to neuron. The right set of weights allow the neural network to make accurate 
predictions. However, these weights first have to be learned and cannot simply be derived. 
The process of “learning” weights (training) is often much more complex and time-

Fig. 2. Visual representation of different machine learning algorithms. (a) Support Vector Machines aim 
to draw an optimal decision boundary between two categories. (b) Random Forest models build multiple 
decision trees based on a subset of variables and data. This average of the decision trees is used as the final 
prediction. (c) Neural Networks transform the input as it passes through the hidden layers. These transfor-
mations should allow the network to make accurate classification in the output layer.
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consuming than the training of random forest classifiers or SVMs. Deep Learning refers to a 
neural network which has multiple hidden layers. These additional layers make the model 
even harder to train but tend to produce better results [19].

Convolutional Neural Networks (CNN) are a special kind of neural networks and were 
initially developed for the field of image processing. Loosely speaking, CNNs run multiple 
filters over the image/matrix and can identify important patterns. The advantage of a CNN is 
that it can deal with 2D-(e.g. images) and 3D inputs, while regular neural networks are only 
able to use 1D inputs. Long-short term memory (LSTM) networks are another specialized 
neural network. LSTMs originate from the field of natural language processing and belong 
to the class of Recurrent Neural Networks. Their advantage is that they are able to process 
input and taking the order of the input into account as a sequence of data. As an example, 
while processing a specific word in a sentence, the LSTM is able to take into account what 
was said earlier in the sentence, so a word can be processed differently depending on what 
was said before. More specific to biochemistry, LSTMs could process amino acids differently 
based on the surrounding amino acids.

The application of machine learning in ion-channel research can broadly be summarized 
into two categories. One is concerned with the prediction of functionality and topology of 
ion-channels, the second is concerned with the quantitative structure-activity relationship 
(QSAR) prediction, which aims to predict the activity of a given ligand on one or multiple 
targets.

Functionality Prediction

One application of machine learning is the identification and classification of ion 
channels based on their amino acid sequence, which is an important feature for the 
analysis of new and unknown sequences. The earliest application of machine learning in 
this context was described by Liu et al. in 2006 [20]. The goal was to classify five different 
types of voltage-gated potassium-channels purely based on their amino acid sequence. Here, 
known sequences were featurized using a dipeptide composition that encodes the relative 
frequency of dipeptides in a protein. They used SVMs, even though SVMS can only be used for 
binary classification. This means they can only be trained to distinguish between two classes 
of ion-channels. For that reason, Liu et al. trained five different SVMs, one for each channel 
type. Their approach was quite successfully classifying almost all channels correctly.

In the same year, VGIchan was released by Saha et al. [21] together with a still available 
webserver. They shifted the attention to differentiate between different voltage-gated 
ion channels (potassium, sodium, calcium, chloride). They used a SVM and Dipeptide 
Composition together with HMMER [22] generated profiles for the four types of voltage-
gated ion-channels. HMMER is a tool able to search for sequence homologs based on profiles 
of multiple sequences based on Hidden Markov Model (HMM). Whenever HMMER failed to 
make a prediction, the SVM predictions were used for a final assessment. Overall an accuracy 
of 97.78 % was achieved.

In 2011 Lin et al. [23] extended the existing method to not only classify the type of 
voltage-gated ion channels but to predict whether a given sequence is an ion-channel or 
not. If an ion channel is predicted, the next step is the prediction whether it is a ligand or a 
voltage-dependent ion channel, and what type of voltage-dependent ion channel it is. While 
the choice of SVM was made arbitrarily before, Lin.et al. compared different algorithms 
and found the SVM to work best. Major changes were introduced by Gao et al. in 2016 with 
the introduction of PSIONplus [24]. Based on the comparisons made by Lin et al. [23] in 
2011 they stuck to an SVM but largely extended the features used as input. Apart from the 
dipeptide composition, various physiochemical properties, the predicted relative solvent 
accessibility, and information on secondary structures were used. Additionally, a PSI-Blast 
[25] approach was implemented to generate the position-specific scoring matrix (PSSM), 
which is then converted into a feature vector. Their method outperformed the general BLAST 
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[26] and also previous models such as the VGIchan [20] and the model described by Lin et 
al. 2011. Simultaneously, Tiwari et al. proposed a novel arguably more efficient method [27]. 
While the results are not directly comparable, their model was able to predict ion-channels 
and their subtype with high accuracy and without using any calculation using BLAST. For 
their models it appeared that the Random Forest classifiers perform better than SVMs. In 
2017, IonPredv2.0 by Zhao et al. [28] extended the original work of Lin et al. with a novel 
pseudo dipeptide composition which led to improvements in performance in comparison to 
the original paper.

Unfortunately, there were two issues with the methods proposed at that time: (1) 
Many publications did not provide code or a web server which allows researchers to use 
and compare methods, and (2) there was no benchmarking dataset which allows objective 
comparison of different methods. This changed in 2019 with a review published by Gao 
et al. [29]. They compared the performance of three published methods: VGIchan [21], 
PSIONplus [24], and IonchanPred 2.0 [28]. They found that IonChanPred 2.0 is the overall 
best performing model. More importantly, they showed that all models performed worse 
on the benchmarking dataset than on the datasets which they were trained on in their 
respective original work. In the same year, two additional models were released: One by Han 
et al. [30] and a second called DeepIon by Taju et al. [31]. Rather than classifying subtypes of 
ion-channels, DeepIon focused on distinguishing ion channels, Ion Transporters, and other 
membrane proteins. The approach proved to be successful to differentiate between the 
described categories. This work is especially noteworthy as the applied method is completely 
new in this context. It uses one of the newly described deep learning/artificial intelligence 
methods: A Convolution Neural Network (CNN). All models up to now could only take vectors 
(1D) as input. For example, the PSSM in PSIONplus was converted into a vector by summing 
all rows of the same amino acid and concatenating those rows. DeepIon does not require this 
concatenation and can apply the CNN directly on the available 2D Feature Matrix. A second 
advantage is that (convolutional) neural networks can integrate all prediction tasks into one 
model and allow for multitask and multi-target predictions. This contrasts with the used 
SVMs that are only able to be used for a binary classification. Multiple SVMs have therefore 
be trained to overcome this issue.

The most recent work by Gao in 2020 [32] describes an extension of their original 
model PSIONplus [24] from 2016. They addressed many problems that burdened earlier 
models. For ones, the prediction is also extended to the subtypes of ligand-gated channels. 
Second, sequential multi-label (or multitask) classification is made possible by combining 
predictions from higher-level models with the ones of lower-level ones. This enables the 
classification of ion channels that belong to more than one subtype of ion-channel. These 
changes lead to an overall more powerful model, providing better results in less time.

Transmembrane topology prediction

A second use case for machine learning methods in the context of ion channels is topology 
prediction. In general, the topology of a protein refers to the overall folded 3D structure and 
the connected secondary structure elements. In case of ion channels, topology predictions 
are used to predict the ion channel domain that lies within the membrane. This is possible 
since most transmembrane ion channel domains are build-up of helices that show different 
amino acid compositions compared to helices lying outside of a membrane. Early models of 
transmembrane protein topology were simple but with the increasing number of available 
crystal structures, the models became increasingly complex. Membrane-embedded helices 
“can be short, long, kinked or interrupted in the middle of the membrane, they can cross the 
membrane at oblique angles, lie flat on the surface of the membrane, or even span only a 
part of the membrane and then turn back, forming so-called re-entrant loops” [33]. The first 
attempts to predict secondary structures within membrane proteins date back to 1982 [34] 
and many improvements have been made over the last 34 years. Due to the huge amount 



Cell Physiol Biochem 2021;55(S3):14-45
DOI: 10.33594/000000336
Published online: 3 March 2021 20

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Menke et al.: Computational Ion Channel Research

of work described, we will strictly focus on ML algorithms used for such predictions. For a 
complete overview of topology predictions of transmembrane proteins, we refer to a review 
from 2017 by Almeida et al. [35].

In contrast to function prediction, neural networks were utilized relatively early 
for secondary structure predictions and were later used for topology predictions of 
transmembrane proteins. In 1993 Fariselli et al. [36] published their work on predicting 
α-helix and β-sheet segments using a neural network in combination with a single protein 
sequence as input. A segment of 17 amino acids was used as input for the network where 
each amino acid in this sequence was encoded as a binary vector of length 20 (one position 
per amino acid). Therefore, the final input vector had a length of 340 bits (17 x 20). Burkhard 
Rost and Chris Sander continued to improve and expand this approach [37–40]. In 1995 they 
showed that using profiles obtained from multiple alignments improves the performance 
of their neural network. This neural network is also one of the first that is used to localize 
transmembrane helices in a given protein sequence. In the early 2000s, HMMs were a popular 
choice for topology predictions [41–45], but Martelli et al. used them in combination with 
a neural network [46]. In 2003, they introduced their approach called ENSEMBLE focusing 
on all-α transmembrane proteins. As their name suggests, they used an ensemble of a single 
neural network and two Hidden Markov Models. Their average predictions are used to 
identify the transmembrane segments.

In 2007, David T. Jones proposed a new model called MEMSAT3, which solves the issue 
of having to use rule-based prediction for C- and N-terminals [47]. As the name suggests, it 
builds on their previous work starting from 1994 where MEMSAT was first introduced [48]. 
It classified residues into 5 different classes based on probabilities obtained from curated 
membrane protein data. MEMSAT2 [49] extended the models by using sequence profiles. 
MEMSAT3 starts out with a neural network that uses the information of residues based on 
the Position-Specific Scoring Matrix (PSSM). The output of the Neural Network is then used 
as input for the MEMSAT algorithm. The neural network used by Jones can directly predict 
signal-peptides, rendering ad-hoc rules used by previous models obsolete.

MemBrain [50] was introduced in 2008 and uses a more sophisticated version of 
the k-nearest-neighbour (kNN) algorithm with features obtained through the PSSM. kNN 
algorithms classify data by assuming that similar objects should belong to the same class. 
When deciding for a new object to which class it belongs, the models analyse to which class 
its closest neighbours belong and the majority determines the class of the new object. The 
more sophisticated algorithm used by MemBrain, among other things, extends the kNN to a 
multilabel classification task. With this newly proposed method, MemBrain was providing the 
best classification prediction up to this point. Later the year, OCTOPUS [51] was introduced. 
Multiple Neural Networks generate enriched input from traditional sources such as the 
PSSM. These features were then fed into an HMM. What makes this approach unique is that 
it can classify helices which re-enter or do not completely cross the membrane. Later in the 
year, SPOCTOPU [52] was published an extension which allows for the classification of signal 
peptides.

In 2009, TOPCONS [53] combined five published models for topology predictions to 
create a more powerful combined predictor based on the consensus of the individual models. 
TOPCONS aggregates the output of every single model and uses them for their newly trained 
HMM. While TOPCONS was only slightly better than the individual models it provided 
reliability scores per prediction, which measured how certain the prediction is. In 2015 an 
updated TOPCONS version was released [54]. The new TOPCONS uses updated models with 
increased speed and other user experience improvements. With the new model, the overall 
accuracy could be improved from 83% to 87%. Next to the updated TOPCONS model, a new 
Consensus mode (CCTOP) [55] was introduced. It uses predictions from 10 different models 
and utilized them as constraints in a HMM. Unique about this approach is that it allows the 
user to define constraints and weights the inputs from the different models depending on 
their accuracy. CCTOP performed better than any of the single models as well as previous 
consensus models such as TOPCONS.
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A tool using more sophisticated neural networks is DMCTOP [56]. It is based on a 
multi-scale CNN model trained to predict the topology. The multi-scale approach allows the 
network to detect dependencies across various ranges resulting in a prediction accuracy that 
is superior to previously reported methods. Lastly, an updated MemBrain version [57] was 
released. It uses an ensemble method of two CNNs, one to process the complete sequence 
and one processing a sliding window of 17 residues. Additionally, it uses two SVMs aiming 
to predict the N- and C-terminus. The SVMs are also used to predict the orientation of the 
helices. Fig. 3 shows a MemBrain prediction exemplary on two transmembrane proteins.

Most methods introduced only focus on the predictions of α-helices and β-barrels are 
often neglected. The decision against this prediction is often made because α-helices are 
more abundant, and β-barrels are mostly occurring in prokaryotic cells [61]. As the methods 
do not necessarily diverge greatly, we will only provide a quick overview for β-barrels. HMM 
are the models of choice for the topological predictions [62–65]. and early benchmarking 
show that they are the best performing models [66].

Fig. 3. Transmembrane helix prediction using MemBrain [57] for a human C5a anaphylatoxin chemotactic 
receptor 1 (C5aR, a-d) and a hyperpolarization-activated cyclic nucleotide-gated ion channel (HCN-1, e-h). 
Structural overview of a) C5aR (pdb 5o9h[58]) and e) a HCN-1 subunit (pdb 5u6o[59]), b/f) Transmem-
brane Helix Propensity, c/g) predicted topology and d/h) sequence information about secondary structure 
and membrane regions taken from the corresponding pdb entries (www.rcsb.org [60]) extended with infor-
mation about MemBrain predictions.
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QSAR

Quantitative structure-activity relationship describes mathematical models that 
determine a relation between a compound and their activity on specific proteins [67]. 
Molecules are often described in terms of molecular descriptors to establish these 
mathematical models and the models then relate these descriptors to the activity of 
the molecule [68]. Molecular descriptors are numeric representations which describe 
certain (bio)chemical or physical properties of molecules. A special class of descriptors 
are molecular fingerprints, which aim to represent molecules and their substructures in 
a vector. By selecting the appropriate descriptors in combination with the right model it 
is possible to predict the activity of molecules on specific proteins. For this, a database of 
compounds with known activities and/or inactivities on a specific protein target is required. 
By statistical methods, like partial least square regression or machine learning methods, 
a combination of molecular descriptors is identified that is best suited to predict affinity. 
For selecting the best QSAR model and calculating statistical parameters for validation, a 
test dataset of previously unseen molecules is used. A 2nd dataset, the external validation 
dataset, is applied on the final selected QSAR model for assessing the performance of the 
QSAR model. A lot can go wrong when creating a QSAR model, and the inexperienced reader 
is advised to read the following manuscripts on best practice: One by Cherkasov et al. [67] 
and the other by Alexander Trophsa [69]. The final aim of a QSAR model is to predict if and 
how a given compound will be active on a specific protein or not.

Early uses of neural networks for QSAR date back to the 1990s [70–72]. However, these 
models were tiny compared to today’s standards. One of the first neural networks used as 
a QSAR model for an ion-channel was trained with 57 compounds and their network used 
8 hidden nodes [73]. Thanks to hardware improvements, new algorithms and increasing 
availability of data, models are much larger nowadays. The ion-channel that has attracted 
the most attention with regards to QSAR is the hERG channel, since it is an off-target and 
responsible for severe side-effects of potential drugs. The early machine learning models for 
hERG activity predictions are well described by Anthony Klon in 2010[74]. From this review, 
it becomes apparent that a wide variety of ML algorithms are utilized with the already 
mentioned SVMs, Neural Networks, and the Random Forest algorithm being the most 
popular. It can also be seen that the available data has increased over time. Models in the 
90s were built on small datasets, the models introduced later were trained on at least 300 
compounds. However, not all models are actually trained to predict the binding affinity of 
compounds to hERG. Rather they perform a binary classification (active or not), this allows 
some models to not be trained on hERG activities directly but on dofetilide displacement 
[75] or more general torsades de points (TdP) measures [76, 77].

Many models use as input a variety of descriptors and molecular fingerprints that 
describe the physicochemical properties of the input molecules. These input feature vectors 
are often much bigger than what is used in the prediction of topology or functionality. Since 
QSAR models do not necessarily have to take into account the protein structure, they do not 
need to deal with sequential data (e.g. amino acid sequence), making it easier to generate 
features. Free software exists which can quickly calculate up to 1800 different descriptors 
for every single molecule in the dataset [78]. Commercial software packages offer more than 
4000 descriptors [79].

In an article from 2014 by Braga and colleagues [80], it was revealed that most hERG 
QSAR Models so far do not comply with published good-practice rules as well as the OECD 
guidelines [81] for QSAR Models. Next to insufficient predictive power, many models do 
not pass the Y-scrambling test. The dependent variable that the QSAR Model is supposed 
to predict is thereby randomly scrambled. Thus, the relation of structure to activity is now 
randomized. A good QSAR model should perform much better on the regular dataset than 
the Y-scrambled dataset. Lastly, the applicability domain is rarely assessed. One would like to 
know when the model is reliable and when it is not. Therefore, Braga et al. [82] introduced a 
model that follows these guidelines. It is a consensus model that combines different machine 
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learning algorithms with different inputs. The chosen models are Random Forest Model, 
SVM, and a Gradient Boosting Machine (GBM). Gradient Boosting Machines, like RF models, 
rely on Decision Trees. They provided in their work the hERG liability prediction, assess 
whether the compound is within the applicability domain, and also provided an overview of 
which substructures of the molecule are responsible for the prediction.

A new model was developed in 2019 by Konda et al. [83]. They also acknowledged the 
same flaws of previous models and built a consensus model. They started out by computing 
a vast number of descriptors and fingerprints, leading to a combined input of 16.000 bits. 
With extensive variable selection, the optimal set of descriptors and models were chosen. 
They compared their model on three external validation sets and found that they performed 
better than previous hERG QSAR models. Unfortunately, they did not provide the code or a 
web server to make use of their model. Lastly, a QSAR by Siramshetty et al. [84] analysed the 
challenges that one can come across when building a QSAR model for hERG. Especially, the 
data from public databases causes an issue as activity measures are quite heterogeneous. 
Further, they showed that the choice of fingerprint for their models did not make a significant 
difference. However, the activity cut-off value chosen has a strong impact on the performance 
of the QSAR model. The cut-off value determines which compounds are considered active 
and which inactive based on the activity of that compound. This converts the problem of 
predicting the exact activity measures for compounds to a binary classification task (active 
vs. inactive).

Besides hERG, QSAR models also exist for other channels. The voltage-gated sodium 
ion channel 1.5 (NaV 1.5) is another ion channel also related to TdP. Khalfia et al. [85] built a 
QSAR model for this channel using a variety of machine learning models and found a gradient 
boosting machine to work best. They followed OECD guidelines and obtained statistical 
accuracy above 0.8. A different paper considered with TdP argues that QSAR models specific 
to a single channel are not able to take into account the multi-channel effect and thus not 
capable of making an accurate assessment of cardiotoxicity. They focus on a model that 
classifies torsadogenic drugs using an SVM [86].

Another target is the voltage-gated sodium channel 1.7 (NaV 1.7), involved in the pain 
generation [87]. Kong et al. [88] trained many different ML models to identify NaV 1.7 
inhibitors. They showed that an RF with a CDK [89] fingerprint delivered the best performance 
in discriminating actives from inactives. More interestingly they also compared their model 
to a Graph Neural Network (sometimes called Graph Convolutions Network). Because GNNs 
are thought to be well suited to handle molecular structures without having to compute a 
vectoral representation, a recent surge of their application in chemistry has been observed 
[90]. However, Kong et al. did not see any benefits from their GNN with regards to prediction 
quality. Similar results were also found for a hERG QSAR model which did not benefit from 
the usage of GNNs [91].

Additionally, Kong and colleagues investigated whether a fingerprint obtained from an 
autoencoder could be a better-suited input than traditional fingerprints. Autoencoders are 
neural networks that aim to first encode the input into a single dense vector, and then in a 
second step reconstruct the original input from the encoded vector. These autoencoders can 
be trained without labelled data, as the input also represents the required output. The dense 
vector obtained from the autoencoder can also be used as a fingerprint, which is done by Kong 
et al. [88]. This, however, did not result in a better performance than traditional fingerprints. 
They also used the dense vector to optimize the synthetic accessibility and drug-likeness 
of compounds identified by their models. By changing the dense vector slightly, one can 
obtain altered molecules. One of the compounds identified by the model was experimentally 
validated and found to be an actual inhibitor of the NaV 1.7.

Lastly, we introduce two articles that do not focus on ion-channels specifically, but 
rather include them as a subset in their testing. The first is DeepAffinity [92] by Karimi and 
colleagues. It aims to predict the binding affinity between a ligand and a protein using both 
ligand and protein information. For this, they use two RNNs one for the protein sequence and 
one for the ligand, represented in the SMILES format. Similar to Kong et al., an autoencoder 
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is used to pre-train the model. Pretraining is done if not enough data is available to get 
well performing weights for the neural network. Pretraining allows the neural network 
to adapt their weight to the data that is going to be used. This pre-training should already 
induce some “syntax knowledge” of SMILES and/or protein sequence into the model. Later 
training for predicting binding-affinity should then be easier. The encoder of the pre-trained 
autoencoder is used in the actual training of the model. They follow up the RNN with a single 
CNN layer and later combine the input from the SMILES and protein sequence. While the 
model performed overall better than baseline models, looking specifically at ion-channels a 
simpler RF could outperform their model. Most likely this is due to the fact that only 15,000 
out of almost 500,000 samples in the dataset were ion channel modulators. So, one would 
expect that the models perform better for more frequently occurring subclasses. Another 
proposed method was introduced by Wang et al. [93] in 2020. They combine the ligand 
with features obtained from the PSSM of the protein as input for an LSTM. This approach 
outperforms more traditional machine learning models even for ion-channels. Here a 
bigger proportion of the data were ion channels, although overall their dataset contains less 
structures than DeepAffinity.

As it can be seen, the complexity of QSAR models increased over time. However, the 
choice of a model is much more diverse than for topology predictions. This can be attributed 
to the nature of the predictions: Topology predictions must take into account the order of the 
amino acid sequence. Regular random forests or neural networks are not capable of doing 
so, HMMs are for that reason used in most structure-based models. The choice of model is 
also depending on available features that can be utilized by a model. QSAR models can rely 
on many sources such as molecular descriptors and molecular fingerprints, which are easily 
computed. Something what topology or functionality predictions cannot rely on. Lastly, 
much more activity data is available than protein structures, hence more complex models 
can be trained based on abundance of data.

Misc

In this section, we introduce two recent papers which do not fit into any of the 
previously mentioned categories. The first automates the event-detection for patch-clamp 
measurements. Patch-clamp techniques aim to quantify the dysregulation of ion-channels. 
However, the recordings are noisy and must first be cleaned, usually done through human 
supervision. The aim is to identify if and how many ion channels are open. To automate 
this cleaning process “Deep-Channel” [94] was developed. It uses a combination of CNN and 
LSTM to allow for a more effective assessment of long and short-term dependencies. One 
of the biggest challenges was that little to no labelled data with known ground truth exist. 
Practitioners performing patch-clamp can only guess from the data how many channels are 
open, but there is no way to identify how many channels did actually open. To overcome this 
process, they used a HMM to generate data which is reflective of the closing and opening of 
ion channels. The trained models were then compared to humans and it was found the model 
is much faster with comparable accuracy, especially for data in which five ion-channels are 
measured. Lastly, a work from Rao and colleagues uses an SVM to build a simple model that 
can be used to identify hydrophobic gates. Hydrophobic gates can block the passing of ion 
channels even when the pore is not blocked by any steric occlusion. Their SVM uses only the 
local hydrophobicity and radius of the pore to classify whether this is blocked through by the 
displacement of water [95].
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Summary and Discussion

We have shown various applications of machine learning projects focusing on ion-
channels. While the building of QSAR models is done for all kinds of target classes, the 
prediction of topology and sub-types is a challenge unique to ion-channels. Especially for 
these structure-based challenges, models are often simpler than used for other structure-
based tasks where different variants of neural networks are more frequently used [96].

One can see a clear improvement for the classification of ion-channels over time. Initial 
models were only interested in differentiating between specific subtypes of a specific ion-
channel. Today’s models are able to recognize ion channels, identify whether they are 
ligand- or voltage-gated and additionally can also identify the specific subtype. However, 
this success is not due to more advanced models but rather an influx of available data and 
some better feature generation. The most recent model PSIONplusm builds on SVMs just like 
early models from 2006.

However, while the SVM is easy to train with relatively little data, it also has drawbacks 
like the binary classification problem. This forces an approach to train different SVMs to 
classify ion-channels completely. In the latest edition of PSIONplusm, the authors overcame 
this issue, but other algorithms would provide a more straightforward solution for the issue. 
Traditional Neural Networks are often used for multi-task challenges and have proven to be 
quite successful [97–99]. However, neural networks require more data than SVMs or random 
forest to be trained successfully. While the available data increased over the last years, it 
might be not enough for traditional neural networks. Even for SVMs Gao et al. (2020) states 
that improvements can only be made with more labelled data [32].

Topology predictions are much more complex than ion-channel classification. Rather 
than having to make a single, global prediction for the whole sequence, topology prediction 
needs to identify segments within each sequence. Further, topology prediction can focus on 
tasks with increasing complexity. Early models only attempted to identify transmembrane 
segments, while recent models aim to identify signal peptides, re-entrances, and orientation 
of helices. Featurization also differs between the two tasks. As ion-channel classification only 
requires global predictions, features that are computed across the complete sequence are 
often used. Many models are using amino acid composition or di/tripeptide compositions 
and beyond that physicochemical properties are computed based on the complete sequence. 
Some models include some form of amino acid composition as their input for topology 
predictions but most of the time features extracted from PSSM profiles are used. The 
differences can also be seen in the choice of model. A frequently used algorithm for topology 
predictions is the HMM. Hidden Markov Models are well-suited for such tasks as they can take 
into account the sequence in which the amino acids are ordered. More recent models rely on 
LSTM or multi-scale CNN which also have similar capabilities. These models are much more 
complex than the ones used in the ion-channel classification. This can be achieved as more 
training data is available. As predictions are made for each residue in a sequence, models 
have “more opportunities” to learn. Ion-channel predictions do not focus on a single residue. 
Here the dominant choice is the SVM. It is much simpler and cannot take into account the 
sequence ordering. This is also not necessary as most features used are global ones.

Links to all software discussed so far can be found in Table 1. Our recommendation 
for functionality prediction would be to use PSIONplusm by Gao et al. It is the most recent 
model which offers the most in-depth prediction while providing arguably the most accurate 
predictions. For topology predictions, not as clear. In the paper introducing the third 
iteration of MemBrain, it appeared that this version provides the most accurate predictions. 
Additionally, it can perform predictions for orientation which other software cannot do. 
However, other webservers provide almost similar performance and, in some scenarios, 
even better. These include MEMSAT-SVM and CCTOP. As all of these can be accessed easily 
via a web browser, we believe it is advisable to use all of them and compare the results.

For QSAR modelling of ion channel modulator activity, a more diverse set of algorithms 
is used. It was shown that more complex models such as GNNs or RNN+CNN combinations 
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did not always lead to improved model performance. The biggest issue that ion-channel 
faces with regards to artificial intelligence is the data or the lack thereof. Complex models 
which worked well for many target classes did not produce the desired results for ion-
channels. One way to fix the reliance on an increased volume of data is to utilize transfer 
learning, multi-task and pre-training [98, 100–103]. These methods allow the researcher to 
utilize the power of larger datasets for more specific challenges and could help build more 
sophisticated models for ion-channels.

Computational approaches for structure-based analysis of ion channels 

The availability of structural information on ion channels is important in order to get an 
in-depth insight into their function and how mutations lead to dysfunctional ion channels 
that are responsible for severe channelopathies. As a matter of fact, no ion channel structure 
was known before 1998 when Doyle et al. [104] described for the first time a crystal structure 
of a potassium channel from Streptomyces lividans with a resolution of 3.2 angstroms (see 
Fig. 4a/b). This structure contains a selectivity pore of 12Å long where negatively charged 
moieties are pointing towards the inside of the pore to balance the positive charges of the 
potassium ions. Although the crystallisation of membrane bound proteins for structure 
determination is extremely difficult and the experimental needs demanding [105], numerous 
three-dimensional structures of ion channels are available nowadays. However, the number 
is small compared to other transmembrane families such as G-protein coupled receptors 
(GPCRs). The first structure determination of a TRP ion channel (see Fig. 4c/d) without any 
crystallisation via cryogenic electron microscopy (cryo-EM) in 2013 [106] has had a massive 
impact on the field of ion channel structure determination. Although X-ray crystallography 
is still the method of choice for a detailed and high-resolution overview on ion channels, 
cryogenic electron microscopy (cryo-EM) is an emerging field that has raised hopes of 
gaining access to more ion channel structures. An overview of cryo-EM can be found in the 
paper by Nygaard and colleagues [107].

Table 1. Online Tools using Artificial Intelligence specific to Ion-channels. Only webservers which were 
accessible at point of publication are mentioned

http://crdd.osdd.net/raghava/vgichan/
https://sourceforge.net/projects/psion/
http://lin-group.cn/server/IonchanPredv2.0/webServer.html
http://biologydeep.com/deepion/app/identification/
https://yanglab.nankai.edu.cn/PSIONplusm
http://www.enzim.hu/hmmtop/index.php
https://phobius.sbc.su.se/
https://octopus.cbr.su.se/
https://old.topcons.net/
https://topcons.cbr.su.se/pred/
http://cctop.enzim.ttk.mta.hu/?_=
https://github.com/NENUBioCompute/DMCTOP
http://www.csbio.sjtu.edu.cn/bioinf/MemBrain/
http://predherg.labmol.com.br/
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Due to the limited number of available high-resolution X-ray structures and the low 
resolution of cryo-EM structures, computational methods are of utmost importance for 
the detailed analysis of ion channel (dys)function, ligand-binding and the development of 
drugs to cure channelopathies. Many researchers have applied computational methods to 
this day and achieved major accomplishments in the field. In the following paragraph, we 
will give a brief introduction into important structure-based computational methods used in 
ion channel research. Subsequently successful applications of these methods are discussed, 
leading to a better understanding of ion channels. Such computational methods include 
homology modelling, molecular docking and molecular dynamics (MD) simulations.

The basics of structure-based computational methods

Homology modelling
Homology modelling or comparative protein modelling is being applied for decades now 

[108]. Although the methods used improved over the years [109] the underlying workflow 
remains the same (Fig. 5) [110]. The most important step is the initial template selection 
of a known protein structure most suited to build the basis for modelling. This is done 
by a pairwise sequence comparison of the target sequence to all known x-ray structures 
available in the protein data bank (PDB, www.
wwpdb.org/) [111] It is expected that below 
a sequence identity of 25% it is difficult to 
create a successful homology model. The next 
step is the alignment of the target sequence 
and the sequence of the selected template. It 
is advisable to not rely on a simple pairwise 
sequence alignment but use multiple 
sequence alignments or more sophisticated 
and specialized alignment methods. The 
model building starts by taking the 3D 
backbone of the template structure, followed 
by the modelling of gaps and missing loop 
regions. Finally, the sidechains of the target 
structure are reconstructed. Afterwards, the 
models are optimised via energy minimisation 
and validated based on different quality 
assessment like sidechain clashes or unlikely 
backbone or sidechain torsion angles. A 
good webserver for quality assessment is 
the Continuous Automated Model Evaluation Fig. 5. Homology modelling workflow.

Fig. 4. The first ion channel x-ray and cryo-EM structures. a) cartoon representation and b) surface repre-
sentation (one subunit hidden, magenta spheres: K+) of the first x-ray structure (pdb 1bl8 [104]). c) cartoon 
representation and d) surface representation of the first cryo-EM structure (pdb 3j5p [106]).
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project (CAMEO, www.cameo3d.org) [112] Here regular quality assessments of the registered 
webservers are reported. Potential inaccuracies are also discussed by Haddad et al. [110]: 
Inappropriate template selection, errors in the final target-template alignment, problematic 
sidechain packing or problematic loop modelling due to local differences between target and 
template structure.

A good starting point for the interested reader are “the ten quick tips for homology 
modelling” described by Haddad et al. [110], and the results of the regular “Critical 
Assessment of Techniques for Protein Structure Prediction (CASP) challenges” [113]. Table 
2 shows a summary of easy to use and successful webserver for homology modelling. In 
addition, Modeller [114] (https://salilab.org/modeller/) is a well-known free-for-academics 
software tool that allows local modelling creation.

Molecular Dynamics Simulations
The basic idea behind molecular dynamics (MD) simulations is the calculation of the 

position of each atom of a system as a function of time, based on Newton’s laws of motion 
[121]. The basis is a calculation of the forces acting on each atom and the subsequent 
updating of the position and velocity. These calculations are repeated on a very short time 
scale leading to a trajectory of protein dynamics over time. This trajectory describes the 
internal motions and the resulting conformational changes. The first MD simulation of a 
protein was performed in 1977 with the simulation of a globular protein (bovine pancreatic 
trypsin inhibitor) [122].

Meanwhile, MD simulations have become the most popular method to study and draw a 
chronological series of events characterizing the structural and functional aspects of protein 
behaviour with impact on molecular biology and drug discovery [123]. Indeed, this method 
brought the understanding of molecular systems, such as ion channels, to another level, 
picturizing then a succession of conformational changes from the opening and closing, the 
ion permeation, the external stimuli and the binding of modulators. In contrast to homology 
modelling with available web-servers, the application of molecular dynamics simulations 
still needs experiences and in-depth knowledge about the underlying mechanism. This is 
especially true for ion channels, where the structures have to be embedded in a membrane 
for a realistic simulation. The most widely applied software packages are described in Table 
3.

Computational molecular design and virtual screening
After the target selection step, either by selecting a protein structure from the Protein 

Data Bank or a homologous model built starting from a template protein, computational mo-
lecular design or structure-
based virtual screening can 
be applied for the identi-
fication of binding sites of 
known ligands or for the 
structure-based identifica-
tion of new ion channel in-
hibitors. The most popular 
method in structure-based 
design is molecular docking, 
where the binding mode of 
a small molecule is predict-
ed within a protein bind-
ing site. In the early 1890s, 
Emil Fischer was the first 
to introduce the idea of the 
conventional “key in a lock” 
model [124], he stated that 

Table 2. Well-known homology modelling servers

 

Table 3. Well-known software packages for applying MD simulations

 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://www.sbg.bio.ic.ac.uk/phyre2/index.cgi
http://bioinf.cs.ucl.ac.uk/psipred/
http://raptorx.uchicago.edu/
http://www.robetta.org/
https://swissmodel.expasy.org/
https://ambermd.org/
https://www.charmm.org/
http://www.gromacs.org
http://www.ks.uiuc.edu/Research/namd/
http://www.yasara.org/
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a unique conformation of a ligand is necessary to fit and generate a complementarity unique 
binding site conformation of the target. Based on this idea, molecular docking was the first 
time described by Kuntz et al. in 1982 [125]. They developed and tested a set of algorithms 
that can explore the binding of a ligand to a receptor of a known rigid structure. The confor-
mational space of a ligand is sampled either before placing these rigid conformations into a 
binding site (rigid docking), or the conformations are adapted while placing the conforma-
tions (flexible docking). Although the “key and lock” model introduced earlier was useful to 
predict and identify favourable binding modes, major problems were reported. This model 
implies a rigidity of the catalytic site, thus lacking degrees of freedom. It also does not take 
into account the water moieties, which are in fact important molecules in many cases for 
the binding process. Nowadays, it is more precise to use flexible docking approaches, either 
semi-flexible docking approach, where usually the ligand is flexible and protein rigid, or a 
flexible docking where both the ligand and partly the protein are flexible. It is then no longer 
a “key and lock “model but a “hand and glove” model [126], here bond rotations, sidechains 
rotations are sampled in order to minimize the free energy and avoid steric clashes.

The most popular applied docking software packages are described in Table 4.

Ion conductance

Not long after the publication of the K+ channel crystal structure [104], scientists took 
advantage of the increasing power of computers by starting the first biomolecular simulations 
of that ion channel. Berneche et al. inaugurated the simulation of KcsA K+ channel in 2000 
[132]. The article unveiled a stabilization of the potassium ions with a water-filled cavity in 
the center of that transmembrane protein. Right before, Guidoni et al. attempted a molecular 
dynamic simulation of the same protein permeated by sodium and potassium ions [133]. 
This article introduced the cation selective penetration of this protein, thus repulsing anions. 
They also revealed a salt bridge between Asp80 with Arg89 which is a key stabilizing point 
for that ion channel. Few months later, it was Allen et al. who described a molecular dynamic 
simulation of KcsA potassium channel, noticing a stabilization of the system with a double 
potassium ion penetrating the selectivity pore, and a fickle system unstable with three 
potassium ions [134]. With the increasing computational power more detailed analysis are 
possible, also with respect to ion conductance. In the following part, we will discuss some 
interesting analyses regarding ion conductance using MD simulations.

The availability of an open-conformation of a pore-only construct of a bacterial NaVM 
sodium channel (pdb 4f4l [135]) allowed Ulmschneider et al. to perform detailed analysis 
of ion passage [136]. The pore was embedded into a lipid bilayer and subjected to MD 
simulations. Due to missing voltage-sensing domains, restraints were applied to keep the 
pore open. In addition, an electric field was needed to drive the ions through the channel. 
The simulation revealed five distinct ion binding sites and a sodium conductance of ~33pS, 
whereas the latter is in agreement with experimental validation. The pore is selective for 

Table 4. The most popular applied docking software packages
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sodium, but potassium can also pass through the pore with a larger barrier at the first ion 
binding site (S0) preventing further translocation. Interestingly, lipid tails enter and exit 
channel fenestrations, small openings in the pore region. These openings are also expected 
to be entry portals for hydrophobic molecules. Overall, the simulation showed that the 
sodium ions are hydrated and can be accommodated next to each other. This contrasts with 
potassium channels, where potassium has to be dehydrated to pass through the channel. 
Additionally, they predicted five different ion binding sites (S0-S4), whereas the S1, S2 and S’4 
ion binding sites were confirmed by a higher resolution x-ray structure of the pore [137].

Later, Li et al. used a NaVRh channel structure from marine alpha proteobacterium 
HIMB114 (pdb 4dxw [138]) for the analysis of Na+ translocation. Unfortunately, the available 
structure shows the closed conformation. Therefore, an open state model was built using 
Modeller and an open NaVM structure. The structures were embedded in a lipid bilayer, 
and during MD simulations a transmembrane ion concentration and an electric field were 
applied. The binding free energies for Na+ was calculated by the free energy perturbation 
method. They adopted the simulation protocol described by Ulmschneider et al. [136]. The 
NaVRh -open and the NaVMs exhibited a similar level of ion permeability and the conductance 
of NaVRh channels was calculated as 68 +/- 23 pS which is in comparable magnitude to 
the experimental reported values. More interestingly, they also mutated the four Ser180 
residues at the construction site to the DEKA (Asp, Glu, Lys and Ala) motif of mammalian 
NaV channels. Their analysis showed that the DEKA motif exhibited a favourable ion binding 
site. This motif seems to retard ion permeation, since the DEKA mutant exhibited a smaller 
electric current than the WT NaVRh channel. The conductance was estimated as 43 +/- 22 
pS, also slightly lower as the WT NaVRh, but in agreement with experimental results of 
eukaryotic NaV1.4 channels.

These examples show the power of MD simulations for the analysis of ion permeability 
and channel conductance. Experimental determined values could be reproduced even by 
using homology models or in-silico mutants, which allows for a much better structural 
understanding than wet-lab experiments alone. In the following, we would like to shortly 
highlight additional examples. For a more detailed overview we refer to a review by Zhekova 
et al. [139].

Another important class of ion channels are potassium channels, since the control of 
K+ flux is important for the regulation of the transmembrane potential. Recently, Kopec et 
al. analysed the regulation of K+ flow of a calcium-gated prokaryotic potassium channel 
MthK by extensive MD simulation [140]. It is assumed that potassium channels have an 
activation gate and a selectivity filter gate that are allosterically coupled and regulate channel 
opening, closing and inactivation. Based on x-ray structures with different conformations 
of the activation gate as a starting point, the MD simulation showed that the K+ current is 
regulated by the opening of the activation gate. This gate was not physically blocking the K+ 
flow at any time. Interestingly, a wide opening of the activity gate leads to a water entry to 
the selectivity filter which is then destabilized. Already in 2000, Shrivastava et al. analysed 
the ion permeation through the bacterial potassium channel KscA [141]. In a very short 
simulation time of 5 ns from today’s point of view, they could identify a concerted movement 
of K+ ions and water within the selectivity filter. They also suggested breathing motions that 
leads to the opening of the intracellular gate and allowing a K+ ion to leave the channel. A 
similar study presented by the group showing a similar behaviour for the mammalian Kir6.2 
channel [142]. These examples show impressively, what was already possible 20 years ago 
with limited computational resources and what is possible today.

The last article to be presented is by Furini and Domene. It focuses more on the 
development of MD simulation techniques rather than on an analysis of specific ion channels 
[143]. This should highlight that method development is improving the quality and time 
scales of ion channel analyses. In the study of ion channels, it is important to investigate 
ion permeation, selectivity, and gating. All-atom molecular dynamics simulations played an 
important role in linking ion channel structure and function but required sampling several 
conformational states and accounting for large numbers of particles. For the analysis of ion 
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conductance on a reasonable time frame, an external electric field must be applied. The 
numbers of ions that traverse the channel per unit time are then counted and an estimate of 
the conductivity is obtained. Several advanced methods have been proposed as an alternative 
method to unbiased all-atom MD simulations, among which is metadynamics [143]. Here, 
an external bias potential to accelerate sampling along selected collective variables (CVs) 
is introduced. This bias potential discourages visiting regions of the configurational space 
already explored. In addition, the bias potential provides an estimate of the free energy as a 
function of the collective variables chosen once the simulation has converged. Metadynamics 
aims at enhancing rare events and reconstructing the underlying free energy landscape as a 
function of a set of order parameters, the already introduced CVs. This approach has several 
characteristics that have proven useful for the study of ion channels. Metadynamics can 
be used to accelerate state transitions along a predefined set of CVs, and at the same time 
render the free energy profile along them. Thus, a natural choice for the CVs in this case is 
the displacement of the ions along the pore axis. In their review, Furini and Domene describe 
exemplary studies of ion conduction with this algorithm that have predicted permeation 
pathways and the related binding free energy profiles. In addition, studies addressing 
efficient sampling of ion channel conformations during permeation are also described.

Analysis of functional states

As mentioned earlier, ion channels can change the state between open/closed or they can 
be inactivated. These different states are based on conformational changes that are mainly 
mediated by changes in the membrane potential (voltage-gated channels) or ligand-binding 
(ligand-gated channels). X-ray crystallography or cryo-EM can only show a static picture 
of the different ion channels states, sometimes in low resolution. Computational methods 
(especially MD simulations) are powerful techniques to analyse the different functional states 
in more detail and to gain insights into the required conformational changes and how they 
are induced. In the following, we will discuss studies highlighting the use of computational 
methods for the analysis of functional states of different ion channels.

In a recent study, Dämgen and Biggin analysed the open state of glycine receptors using 
MD simulations [144]. The glycine receptor (GlyR) belongs to the pentameric ligand-gated 
ion channels (pLGIC) that is selective for chloride ions and the endogenous agonist is the 
amino acid glycine. Upon binding of a neurotransmitter, here glycine, the receptor of this 
superfamily undergoes a conformational change to the open state. GlyRs have been the focus 
of structural studies leading to various structures of the GlyRs with agonist, antagonist, 
and modulators bound by cryo-EM [145] and X-ray crystallography [146–148]. Different 
functional states are available annotated to closed, open, and desensitized states, whereas 
MD simulations have provided useful insight into the functional annotation of states to ion 
channel structures, which is difficult to infer from structural information alone. It is assumed 
that two main constriction points are existing in the channel pore: A ring of five hydrophobic 
residues (usually leucine) in the middle of the TMD at the 90 position of the pore lining 
M2 helices (the L90gate) and, in the case of the GlyR, a ring of five proline residues at the 
20 position near the intracellular mouth of the channel pore (the P20gate). The L90gate 
seems to close that gate when antagonists bound. The P-20gate gates the channel in the 
desensitized-like structures.

Among the available structures, one glycine bound cryo-EM structure (pdb 3JAE) 
[145] is of particular interest due to an unusually wide-open pore conformation. The 
distance from the pore centre to the backbone Cα at the -2´ position is about 2 Å wider in 
this structure compared other open-like structures of the pLGIC superfamily. Previous 
work by Gonzalez-Gutierrez et al. found this open-wide pore to have a four times higher 
single-channel conductance than the experimental value [149]. In such simulations, artificial 
restraints were applied to the protein backbone so that it stays very close to the original 
cryo-EM model. Interestingly, if no such restraints are applied, the structure undergoes a so-
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called hydrophobic collapse to a distinct state with a significantly smaller pore radius [150]. 
This behaviour has also been observed in simulations of other open (but not ‘‘wide-open’’) 
structures of the pLGIC family initiated via the non-polar interaction of the 90gate residues. 
A hydrophobic collapse or hydrophobic gating occurs in narrow hydrophobic pores where 
the energetically favoured expulsion of water prohibits ion permeation. This means that a 
pore whose dimensions are theoretically large enough to allow for ion permeation is not 
necessarily ion-permanent due to hydrophobic effects.

The basic hypothesis of Dämgen and Biggin was that the wide-open atomic model fitted 
into the cryo-EM density map may not correspond to an energetically stable representation 
of the open state under physiological conditions. They developed a careful equilibration 
protocol based on MD simulation for the exploration of other open state configurations, 
which agree with the cryo-EM density while preventing the pore from collapsing. Using this 
protocol, they identified an alternative conformation that remains open with a hydrated 
pore that allows selectively for frequent chloride ion permeation. This is based on a leucine 
side chain conformation that is not discernible in the original density map. These results 
unify previous, seemingly contradictory viewpoints and provide a way forward with regards 
to model transitions between states in the pLGIC family. To summarize, Dämgen and Biggin 
found a structural explanation for the hydrophobic collapse seen in some MD simulations 
and a stable open state seen in other MD simulations. This in particular shows the danger 
of low-resolution cryo-EM structures, since both starting points (leading to a hydrophobic 
collapse or staying stable) can be fitted to the cryo-EM density map.

The next presented study by Vijayan et al. deals with the GABAA receptor, another pLGIC 
that is selective for Cl- [151]. In absence of a structure, they built homology models based 
on two other pLGIC x-ray structures in open and closed state. The models were validated 
with molecular dynamics simulation and reproducing realistic binding modes of GABA via 
docking. Subsequently, elastic network modelling (ENM) was combined with normal mode 
analysis for the analysis of needed conformational changes between the closed and open 
state. Elastic network modelling is a coarse-grained method that treats proteins as networks 
of coupled harmonic oscillators and masses representing the starting structure. A “Twist to 
Turn” global motion was identified, accompanied by tilting and rotation of the M2 helices 
along the membrane normal. This rationalises the structural transition and at the same time 
gives an indication of a possibly conserved gating mechanism within the pLGIC.

The next two studies to be discussed deal again with voltage-gated potassium channels. 
Monticelli et al. used steered MD simulations for the analysis of possible coupling mechanisms 
between the motion of the voltage sensors and the opening of the pore in KVAP channels 
[152]. For this, a complete model of the KVAP ion channels was created by combining the 
available full protein structure with a high-resolution structure of the voltage sensor domain 
(VSD). During MD simulations, the VSD was pulled from the intracellular to the extracellular 
side using an applied force. This was assumed to mediate the conformational change from the 
closed to the open state. As a result, a coupling mechanism could be proposed that is based 
on a charged gating rather than conformational changes. Glass et al. analysed the influence 
of β-subunits on the central pore (α-subunits) of voltage gated sodium (NaV) channels [153]. 
These β-subunits are known to modulate the voltage sensitivity and regulate the ion channel 
trafficking. They could show that different subunits (β1 and β3) show distinct differences in 
behaviour within a lipid bilayer.

The last discussed study by Schreiber et al. analysed the influence of inhibitors on the 
N-methyl-D-aspartate (NMDA) receptors [154]. NMDA receptors are ligand-gated glutamate 
receptor consisting of seven different subunits belonging to three groups (GluN1-3) that 
form various hetero-tetrameric receptors. Glutamate can bind to the ligand binding domain 
(LBD) of GluN1 and GluN3 and glycine to the LBD of GluN3. Binding of both agonists results 
in channel opening. An extra-terminal domain (ATD) also modulates channel opening. 
Ifenprodil is a known selective modulator of the GluN2B subunit binding to the interface 
within the ATD between GluN1 and GluN2B. MD simulations combined with site-directed 
mutagenesis and chemical modification of the ifenprodil scaffold revealed an aromatic 
interaction that prevents the needed reorientation of the α5-helix for channel opening.
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Binding site analysis and ligand-target interaction

The identification of the binding site and binding mode of endogenous and exogenous 
ligands is another important area for a better understanding of ion channel function and 
drug development, as even voltage-gated ion channels can be modulated by small molecules. 
Molecular docking is the method of choice for predicting the binding mode of a known 
ligand in case the binding site is known. If not, docking alone can be misleading and further 
(experimental) validation is needed.

In a recent work, Ladefoged et al. analysed the binding mode of vortioxetine to the 
human 5-hydroxytryptamine3A (5HT3A) receptor [155]. 5-HT3 receptors are ligand gated ion 
channels that are modulated by the neurotransmitter serotonin. The antidepressant drug 
vortioxetine modulates several 5-HT receptors and is known to have an antagonist effect 
on the 5-HT3 receptor. It was expected that vortioxetine binds to the orthosteric binding 
site, but this was not shown before. Ladgefort et al. started their analysis with building a 
homology model of human 5-HT3A receptor in an inactive conformation using the software 
MODELER [108]. The model was based on three template structures, since the existing 
homologous mouse 5-HT3A structure showed an unclear conformational state. They 
additionally integrated structural information of an inactive human GABAa receptor and an 
antagonist-bound 5-HTBP receptor for the final modelling. Vortioxetine was then docked 
into the orthosteric binding site leading to six different potential bioactive binding modes 
with different interaction patterns. Subsequent molecular dynamics simulations combined 
with calculation of the relative free energy of binding using an MM-PBSA approach showed 
that two of the six potential binding poses represents the strongest and most stable binding 
mode.

For further validation, site-directed mutagenesis in the h5-HT3A receptor was performed 
and the effect of single point mutations was measured on the vortioxetine IC50. The mutations 
were selected for discrimination between the six different potential binding modes. The 
result of this mutation study clearly showed that four of the possible binding modes do not 
correspond to the actual bioactive binding mode. Only one binding mode can explain the 
results of the mutation study. The binding mode that shows one of the two strongest and 
most stable binding modes. Interestingly, another binding pose was not stable during the 
MD simulation and ended up in a conformation very similar to this most likely bioactive 
conformation. Overall, Ladefoged et al. concluded that vortioxetine has a unique inhibitory 
mechanism, as it shares common amino acids in the binding site as already existing 5-HT3A 
ligands, but it also includes amino acids that were not reported previously. This study 
contributed to new insights into the inhibition of the 5-HT3A receptor.

Besides this, the study highlights the power of computational methods as well as the 
dangers. Docking alone can be misleading as shown here by creating six potential binding 
modes. Additional information should be used for the identification of the near native 
binding pose. It could be helpful to compare the interaction pattern to already known 
complex structures, either by overlaying or by e.g. processing and comparing protein-
ligand interaction fingerprints [156]. MD simulations could be another validation method, 
but especially in the case of membrane-bound ion channels the application of this method 
needs expert knowledge. As described, even MD simulations can lead to ambiguous binding 
modes, leaving a carefully selected site-directed mutagenesis study as the final choice for the 
validation of an assumed binding mode.

Another pitfall is the use of homology models, even when carefully evaluated and 
combined with mutagenesis studies. Brown et al. created KCa2.3 and KCa3.1 channel 
homology models for the structural elucidating of known small molecule activator binding 
and their selectivity for both channels [157]. The analysed activators were known to bind 
to the C-terminal Calmodulin (CaM)-binding domain, so they focused their modelling on 
this part. Using the Rosetta modelling suite [158] they created the C-terminal CaM binding 
domain in complex with CaM for the KCa3.1 and KCa2.3 channel based on a high-resolution 
crystal structure of a KCa2.2 channel CaM-binding domain in complex with CaM and the small 
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molecule activator NS309 (pdb 4J9Z [159]). Due to significant differences in a loop region 
forming the CaM-binding domain between KCa3.1 and KCa2 channels, this region was predicted 
using Rosetta’s loop prediction method [160]. Based on previous site-directed mutagenesis 
studies, it was known that several activators bind in a similar region as NS309 in the KCa2.2 
channel. Therefore, the selectivity of these activators was first analysed. Rosetta based ligand 
docking [161] and validation using site-directed mutagenesis indicated that all KCa activators 
show a hydrogen bond to CaM-M51 in both channels. A closer look into two derivatives (SKA-
121 and SK-111) with selectivity for KCa3.1 over KCa2.3 revealed KCa3.1 R362 as an important 
part of a hydrogen bond network that explains this selectivity. Unfortunately, the availability 
of the full-length KCa3.1 structure [3] later showed that the created homology model was 
partly wrong (see Fig. 6). Shim et al. further analysed KCa3.1 and could confirm the binding 
site of KCa3.1 activators near the helix S4-S5 linker [162]. They analysed the binding mode of 
the activator SKA111 in more detail and could reveal a binding site between the S45A helix 
and the CaM N-lobe via docking and mutagenesis studies. They could further explain that the 
previously identified important residues do not interfere directly with activator binding, but 
with CaM-binding. This presumably also influences the activator binding site.

To summarize, the de novo prediction of an uncertain loop region has led to a wrong 
homology model that seems to be valid, since predicted mutagenesis studies showed the 
expected results but for the wrong reasons. So, one has to be careful if a very low sequence 
similarity is occurring in a region that seems to be important for ligand binding. In a different 
study, this group created a homology model of the KCa3.1 channel pore region based on a 
Kv1.2-Kv2.1 chimeric channel structure (pdb 2R9R [163]) and an open KcsA structure (pdb 
3FB5) [164]. Here, the pore region shows a high similarity to the finally solved KCa3.1 
structure. Together with site-directed mutagenesis they could validate the binding site of 
several channel inhibitors.

In the following, we would like to give an overview about other interesting examples 
regarding the identification of potential binding site and ligand interactions. In a recent 
study, Nguyen et al. analysed the interaction of lidocaine on the human cardiac sodium 
channel hNaV1.5 using homology modelling and molecular dynamics simulations [165]. 
Key interaction residues for the binding of antiarrhythmic and local anaesthetic drugs 
were already known before this analysis. They build a homology model of hNAV1.5 in a 
partially open state based on the cryo-EM structure of eeNaV1.4. It can be expected that the 
homology model is of high quality, since both channels share a sequence identity of 84% 
in the pore-forming transmembrane region. Docking studies revealed a possible similar 
binding site of antiarrhythmic and local anaesthetic drugs. Most interestingly, they could 
show the two different access pathways of lidocaine using microsecond MD simulation on a 
supercomputer as already proposed by Hille in 1977 [166]: A hydrophobic pathway between 
the lipid membrane and through a hydrophilic intracellular gating pathway.

Fig. 6. a) Binding of SKA-111 (yellow) in the calmodulin (CaM, orange red) binding region of the KCa3.1 
(pink) homology model provided by Brown et al. [157]. b) Overlay of CaM binding regions of KCa3.1 homology 
model and cryo-EM structure. c) CaM (kakhi) binding to the CaM binding region of the later solved cryo-EM 
KCa3.1 structure (pdb 6cno [3]).
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In 2019, Faulkner et al. reported new binding sites of fentanyl, which is a pain reliever 
analgesic, with Gloeobacter violaceus ligand-gated ion channel (GLIC) [167]. The new 
identified interactions of this anaesthetic with the channel are different from the conventional 
binding modes observed for other anaesthetics. As the mechanism of action of this drug is 
still unclear, they employed molecular dynamics simulation with three runs of 500ns on the 
apo form of GLIC protein inserted in a phospholipid bilayer. Four fentanyl molecules were 
added to the simulation box in each system. The opioid molecule initiated at 20ns of the 
simulation an interaction with the extracellular hairpin loop of the channel, before extending 
to the binding site of the GLIC channel for the rest of the simulation in two out of three runs, 
indicating the strength of the interaction. These novel binding sites lead to conformational 
changes that were not reported before, as a closure of the helix pore creating a hydrophobic 
gate formed by 233-Ile and 240-Ile residues.

In a work by Yuan et al. four K+ channel scorpion toxins were analysed for their binding 
to the KV1.2 channel [168]. This is of interest as an exemplary analysis to discuss here since 
peptides in general are an important class of channel activity modulators. The analysed 
toxins all belong to the group of α-K+ channel toxins (α-KTxs) and share a similar folding 
pattern consisting of one helix and an antiparallel β-sheet. The basis for this analysis was 
a KV1.2-KV2.1 paddle chimera X-ray structure with bound charybdotoxin (ChTx, pdb 4JTA) 
[169]. The structure of the four α-KTxs were overlaid onto the bound ChTx and the ChTx 
was deleted afterwards. Molecular dynamics simulations of these complexes led to the 
identification of important hydrophobic patches, hydrogen-bonds, and salt bridges between 
this channel and the toxins. Four KV1.2-specific interacting amino acids (D353, Q358, V381, 
and T383) are identified as important for the first time. This discovery might help to design 
highly selective KV1.2-channel inhibitors by altering amino acids of these toxins binding to 
the four channel residues.

In the next presented study, Li et al. used docking-based virtual screening as the final 
validation of an identified ligand binding site in the gating charge pathway of KCNQ2 channels 
[170]. Voltage-gated potassium channels are built up from a pore domain and a voltage-
sensor domain (VSD). The channel opening or closing is mediated via a residue translocation 
in the VSD through a physical gating charge pathway in response to membrane potential 
changes. The compound ztz240 is a known KCNQ2 activator and was used as a chemical 
probe throughout this study. A site-directed mutagenesis study suggests the binding of 
ztz240 to the open-state voltage-sensor domain. A homology model was built using an open-
state KV1.2 channel structure (pdb 2R9R [163]) and ztz240 was docked afterwards into the 
identified binding pocket. A subsequent MD simulation was used for the refinement of the 
binding pose in the KCNQ2 model. An alanine scanning of the binding pocket residues further 
validated the binding pocket. A docking-based virtual screening identified nine compounds 
of five different chemotypes with effects on the outward current of the KCNQ2 channel.

In a recent study, Brömmel and colleagues developed novel fluorescently labelled 
small-molecules targeting the KCa3.1 channel, which displayed promising results in staining 
experiments [171]. The modelling of the synthesized dye with senicapoc as a starting point 
highlighted a perfect insertion in the pore of the protein, corroborating a similar binding of 
the senicapoc moiety described in the rosetta model of this protein [164].

Virtual Screening approaches

Computational methods are not only valuable for the analysis of ion channels, their 
binding sites and interactions of known ligands. Computational molecular design methods 
can also be applied for virtual screening approaches for the rational and fast identification 
of new modulators. In case of available ion channels structures (or validated homology 
models) molecular docking is the method of choice for structure-based virtual screening. 
This is especially interesting, since functional screening of ion channels is often very time 
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consuming and needs measurements of transfected cells. We will discuss in the following 
some successful virtual screening examples.

In 2011, Nury et al. [172] could solve a X-ray structure of propofol bound to a Gloeobacter 
violaceus ligand-gated ion channel (GLIC, pdb 3P50), which is a bacterial homolog of GABAA 
receptors. Heusser et al. 2013 used this as a starting point for the docking-based identification 
of new GLIC and GABAA modulators [173]. It was already known that propofol, isoflurane, and 
midazolam are anaesthetics that play the role of positive allosteric modulators (PAMs) for 
GABAA receptors. In the GLIC complex structure, propofol binds in a lipophilic intra-subunit 
cavity of the transmembrane domain, which is highly conserved in the GABAA receptor and 
other pentameric ligand-gated ion channels (pLGICs). Therefore, it can be expected that 
the GABAA receptor shows a very similar propofol binding site. Heusser et al. started with 
a MD simulation and selected a best performing snapshot based on an initial validation 
experiment. Here, propofol together with 100 very similar molecules were docked into 
302 MD snapshots. One snapshot was selected for the final virtual screening that allowed 
to select propofol out of the 100 decoys with a near native binding mode. Over 153,000 
commercially available compounds were then docked into the GLIC propofol binding site. A 
set of 22 molecules were selected for functional testing on recombinant GLIC based on their 
predicted ranking and 13 of them displayed a modulation of this ion channel. Afterwards, they 
were tested on GABAA. An experimental validation was then followed by mutation studies in 
the possible binding site of GLIC and GABAA. Among the selected compounds, one of them 
showed a similar binding action as propofol on GLIC and GABAA and has been affected by 
the mutation that decreased its action on both targets. This study has provided inestimable 
information about mutant proteins of GLIC and GABAA and the importance of the amino 
acids responsible for the interaction with new PAMs. It has clarified the binding site and the 
conformational changes that occur to the protein allowing an anaesthetic modulation. In 
addition, new modulators could be identified using virtual screening.

The next two articles describe the identification of dual active inhibitors. This 
polypharmacology-based modulation is an important approach in medicinal chemistry, with 
the hope that compounds show synergistic effects when modulation more than one protein 
target [174]. In the first article discussed, Kowal et al. searched for dual active compounds 
interacting as an inhibitor on acetylcholinesterase (AChE) and as a positive allosteric 
modulator for the α7 nicotinic acetylcholine receptor (nAChR) using computational 
molecular design methods [175]. Even when both targets differ with respect to their structure 
and function, their binding pockets efficiently recognise the same neurotransmitter. They 
started their work with galantamine, a marketed drug that already shows the desired dual 
activity. Galantamine was already solved in complex with AChE and an acetylcholine binding 
protein (AChBP) which shows a high similarity to nAChR. They built a homology model 
of human α7 nAChR with galantamine based on this AChBP structure and an α1 nAChR 
extracellular subunit. They performed a structure-based virtual screening using a dataset 
of 87,250 natural products and an in-house database containing 250 lycopodium alkaloids. 
The compounds were first docked into the α7 nAChR homology model, and the highest 
scored compounds were then docked into AChE. A visual inspection led to the selection of 
13 compounds for testing. These compounds were tested for activity on AChE and α7 nAChR 
and two compounds showed the desired dual activity on both receptors. Additional four 
compounds were identified as nAChR antagonists.

In a similar study, the same group performed virtual screening to obtain dual hit 
molecules as acetylcholinesterase (AChE) inhibitors and as an α7 nicotinic acetylcholine 
receptor (α7 nAChR) agonists [176]. This time they based their study on an X-ray structure 
of AChE co-crystallized with donepezil and a homology model of α7 nAChR which was 
constructed using an (α4)2(β2)3nAChR structure and an AChBP structure as templates. They 
docked a library of 3,848,234 drug-like molecules into both protein targets and analysed the 
intersecting high-scoring compounds. Based on visual inspection focusing on the docking 
pose and molecular diversity, 15 of these compounds were purchased for in vitro validation. 
Two compounds showed dual activity with AChE inhibition and activation of the α7 nAChR.
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In an alternative virtual screening approach, Callejo et al. used a ligand-based 
comparison for the identification of new acid-sensing ion channel 3 (ASIC3) modulators 
[177]. They compared the 3D shape and the chemical similarity of a known ASIC3 modulator 
to FDA-approved drugs library of 1884 compounds. The top 150 drugs were visually 
inspected for their similarity to the query compound 2-guanidine-4-methylquinazoline 
(GMQ) and five were selected for testing. One of these drugs (Guanabenz, GBZ) activates 
ASIC3 at physiological pH. They also tested sephin1 as a GBZ derivative. Three homology 
models of rASIC3 were built based on available chicken ASIC1 structures in the open, closed 
and desensitized states. The GMQ, GBZ and sephin1 were docked and the binding site and 
the ligand interactions discussed. To summarize, Callejo et al. were able to identify a new 
ASIC3 modulator using a ligand-based virtual screening, that leads to the prediction of five 
drugs as potential ASIC3 modulators that were tested. This shows the power of ligand-based 
molecular design methods in case a structure and binding site is unknown.

Summary and Discussion

In this second part of our review, we focused on structure-based computational 
methods that rely on the availability of structures of the ion channel of interest. In case these 
structures are not available, several examples are shown where created homology models 
were sufficient enough to get new insights about ion channel function and ligand binding. 
In most cases, homology modelling is combined with MD simulations for the validation 
of these models. Apart from this, MD simulation is a powerful tool to analyse ion channel 
function. In combination with docking, potential ligand binding sites and ligand interaction 
can be analysed in detail. In order to fully understand the needed conformational changes 
for function, it is essential to obtain different functional states of the ion channel from closed 
or open gating to conductive or non-conductive selectivity filters. The understanding of the 
structural insights of the conformational changes that occur rely then on the ability of the 3D 
resolved structures to sample these different states. The different external stimuli trigger a 
cascade of conformational changes leading to the activation of the ion channel, the selectivity 
filter is afterward undergoing an ion flux then returning to a non-conductive state [178].

This review displayed a series of articles where scientists took advantage of the increasing 
power of computational advances to reveal new insights about ion channel function. It was 
shown that it is possible to calculate the ion conductance using MD simulation in a similar 
range as experimentally determined values. However, structure-based computational 
methods allow much more than this, especially a structural understanding that is difficult to 
obtain using wet-lab experiments alone. This includes an understanding of ions selectivity, 
occupancy and translocation in the selectivity filters, conformational changes and the reason 
for activation and inactivation, binding site identification, mutations altering the functional 
behaviour, and many more. These series of events can be computationally performed but 
should be validated experimentally using well-designed electrophysiological experiments, 
site-directed mutagenesis, or ligand testing. The reason is that computational analysis can 
point towards possible hypotheses of ion channel function, that are otherwise not possible, 
but can also be misleading.

There are still unsolved and highly complex events that cannot be accessed from 
molecular dynamics simulations yet such as spontaneous lipid interaction with the protein, 
allosteric modulation, ligand reaching the binding pocket. This leads to high expectations 
in the future in new advanced techniques such as metadynamics [143], umbrella sampling 
[179] and steered MD [152] that should allow us to analyse such complex events on a long 
time scale.
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Conclusion

Ion channels are one of the three most important protein families in the field of drug 
discovery. To date, there are still great uncertainties and much that remains undiscovered 
within this important protein family. We demonstrated in this review the strength and 
abilities of computational methods in ion channel research to support wet lab experiments 
and to get a better understanding of ion channel function and the interaction of modulators. 
Indeed, the computational methods are widely spread nowadays and applied within the 
scientific community, either in academia or in industrial pharmaceutical drug research. As 
it goes from structure-based drug design methods that use the structure of the protein, to 
ligand-based methods that focus purely on ligands. Such methods are used to start from 
scratch looking into massive databases in order to suggest few molecules to be tested and 
validated experimentally. It could be referred to as finding a needle in a haystack. In the era 
where data is abundant, methods such as data mining and knowledge discovery, machine 
learning and QSAR, similarity searching, pharmacophore modeling, homology modeling, 
docking studies, and biomolecular simulation can drastically reduce the resources required 
to find this needle. As an example, when experimental research represents proteins as rigid 
and static, MD simulations shed light on the flexible and mobile protein. To assemble a 
valid model for such simulations of the ion channel or any membrane protein in general, 
few parameters have to be taken into account, such as the lipid bilayer that surrounds the 
protein and the lipid interactions resulting, or the allosteric modulation of few molecules 
interacting with the protein.

Despite the above advantages, there are still limitations in the field of computational 
molecular design. The ligand-based methods still rely on the availability of data that are 
correct and curated, whereas structure-based methods heavily rely on 3D structures that are 
sometimes of bad quality or not available for interesting targets. Even when a protein structure 
is well characterized there could still be gaps and black holes such as allosteric modulations, 
protein conformation and flexibility, or promiscuity that cannot be easily accessed. The usage 
of these information could thus be risky and induce wrong understanding of the behaviour 
of a protein. Every scientist that applies these methods has to be also aware of the limitations 
of the used methods and algorithms. There is the danger that computational methods always 
produce results, even when they are misleading or wrong. Therefore, a basic understanding is 
still needed when applying computational methods and only an experienced computational 
scientist will recognize these pitfalls. We are still far away from only “pressing a button”. 
Especially, the field of machine learning has yet to write its success stories as much efforts 
have been made to develop models, but different to traditional computational models has 
not seen much experimental validation.

However, if applied correctly, computational approaches are powerful methods to 
accelerate the understanding of ion channel function and the development of chemical 
probes or potential drugs.
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