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Abstract
The family of two-pore domain potassium (K2P) channels is critically involved in central 
cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are 
widely expressed in different human cell types and organs. It is therefore not surprising that 
aberrant expression and function of K2P channels are related to a spectrum of human diseases, 
including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite 
homologies in structure, expression, and stimulus, the functional diversity of K2P channels 
leads to heterogeneous influences on human diseases. The role of individual K2P channels 
in different disorders depends on expression patterns and modulation in cellular functions. 
However, an imbalance of potassium homeostasis and action potentials contributes to most 
disease pathologies. In this review, we provide an overview of current knowledge on the role 
of K2P channels in human diseases. We look at altered channel expression and function, the 
potential underlying molecular mechanisms, and prospective research directions in the field 
of K2P channels.

Introduction

Two-pore domain potassium (K2P) channels have been identified and broadly 
characterized in the last decades. While the concept of background potassium currents 
was discovered by Bernstein in 1902, the first K2P channel in drosophila, c.elegans, and 
mammalians was identified in 1996 by the groups of Goldstein and Lesage [1, 2]. Being 
initially recognized as a mere background leak channel, the relevance of K2P channels to 
human disease was for a long time unknown. Today, K2P channels are well known not only 
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for contributing to potassium leak currents but also for maintaining the resting membrane 
potential and modulating diverse physiological functions in mammalian cells. There are 
fifteen members in the K2P channel family, divided into six subgroups (THIK, TASK, TRESK, 
TWIK, TALK, and TREK) according to their distinct primary structures, physiological 
properties, and biological functions. All K2P channel members share common structural 
features, with two pore-forming loops and four transmembrane domains (4TMD) with 
intracellular amino- and carboxyl-termini. Also, they function as homo- or heterodimers 
instead of tetramers as in other potassium channels [3].

The opening of K2P channels is mainly voltage-independent but highly regulated by 
stimuli such as temperature, pH, mechanical stretch, lipids, and anesthetics [4, 5]. K2P channels 
are insensitive to typical potassium channel blockers [6]. They are broadly expressed 
throughout the human body with specific expression profiles among the subgroups (Table 1). 
For example, almost all K2P channels are highly expressed in the central nervous system 
(CNS), while only a few show prominent expression in liver, gallbladder, and lung. Among 
the different subgroups, TASK and TRESK subfamilies are highly expressed in endocrine and 
reproductive systems, whereas TWIK and TALK subfamilies are mainly observed in cardiac 
and gastrointestinal systems, lymphoid organs, and pancreas. The K2P channel expression 
profile is an essential indicator of physiological function. On a cellular level, K2P channel 
functions in excitable cells have been studied intensely, and lately, their influence on non-
excitable cells became evident [7]. In excitable cells, K2P channels modulate cellular activity 
and muscle tone through stabilizing the action potential in neuronal and cardiac systems 
and contributing to general physiological functions such as thermosensation, nociception, 
and muscle contraction/relaxation [8-12]. In non-excitable cells, their prominent expression 
in the pancreas, immune cells, kidney, and cancer cells associate them with a wide range of 
pathological conditions, including type 2 diabetes, multiple sclerosis (MS), cancer, and renal 
disorders [13-16]. In these diseases, the aberrant function of K2P channels influences insulin 
secretion, T cell activation/proliferation, blood-brain barrier function as well as potassium 
re-absorption and homeostasis. Accordingly, TASK1-/- mice revealed an attenuated disease 
course in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple 
sclerosis, by reducing the activation and effector functions of T lymphocytes [17-19]. 

Table 1. K2P channel RNA expression profile in human tissues. The table demonstrates the RNA expression 
levels of fifteen K2P channels in human tissues following the online database The Human Protein Atlas 
(https://www.proteinatlas.org/). In general, the expression profile varies depending on the individual K2P 
channel; some are expressed heterogeneously, whereas others are expressed in specific tissues. Channel 
names are based on the HUGO nomenclature. The indication of channel expression levels in different 
human tissues is categorized as abundant (+++), mild (++), and little (+). CNS: central nervous system, GI: 
gastrointestinal system
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A TASK3 channel blocker displayed its efficacy in inhibiting tumor formation by affecting cell 
cycle and proliferation in tumors [20, 21]. While some K2P channels have been thoroughly 
investigated in various pathological conditions, others remain poorly characterized.

We here provide a comprehensive overview of current knowledge about the role of K2P 
channels in human disease (Table 2) as well as novel ideas for mechanistic studies to further 
unravel the pathophysiological interrelations and identify potential therapeutic strategies 
(Table 3).

K2P channels in oncology

Background
Cancer is a phenomenon of uncontrolled cell growth and metastatic dissemination. It 

is caused by both genetic and environmental factors [22, 23] that lead to distinct cellular 
alterations such as abnormal cellular metabolism, epigenetic changes, and increased 
angiogenesis [24, 25]. Oncogenes have been suggested to activate potassium channels and 
promote tumorigenesis [26, 27]. Thirteen out of fifteen K2P channel was found to associate 
with carcinogenesis, each K2P channel plays a distinct role in tumor development, depending 
on its biophysical characteristics, sensitivity to different stimuli (pH, hypoxia, reactive oxygen 
species, stretch, calcium and glucose levels), and expression patterns.

Human data
Summary. In 2013, a systemic screening of the mRNA expression of fifteen K2P channels 

was conducted in 20 types of cancer by using Oncomine, an online cancer microarray 
database, together with a meta-analysis. Despite heterogeneous expression of K2P channels 
among different cancers, overexpression of KCNK1 and KCNK15 was observed in most 
cancers (bladder, breast, cervical, lung, pancreatic, head and neck cancer, and leukemia), 
whereas KCNK3 and KCNK10 were downregulated in breast, lung, pancreatic cancer, and 
sarcoma [13, 28].

Breast cancer. Ten out of fifteen K2P channels showed altered expression in breast 
cancer. Among those ten genes, eight were upregulated (KCNK1, KCNK3, KCNK5, KCNK6, 
KCNK9, KCNK13, KCNK15, and KCNK17), whereas KCNK2 and KCNK10 were downregulated. 
Upregulation of KCNK5, KCNK9, and KCNK2 was associated with triple-negative type 
breast cancer (TNBC), which is characterized by poor prognosis and limited treatment 
options [28, 29]. Therefore, targeting K2P channels might be a potential therapeutic strategy. 
Functionally, K2P channels modulate breast cancer development in cell proliferation, 
metastasis, and apoptosis [30, 31]. KCNK2 was upregulated in the MDA-MB-231BO human 
metastasis cancer cell line and is highly related to the metastasis towards bone by modulating 
bone sialoprotein (BSP) and its downstream factor αvβ3 integrin [32].

Leukemia. Overexpression of KCNK3, KCNK10, and KCNK12 and downregulation of 
KCNK6 was found in patients with leukemia, resistant hematopoietic cancers, and acute 
myeloid leukemia (AML) [13, 28]. KCNK15 was linked with acute lymphoid leukemia by 
altering DNA methylation in peripheral blood mononuclear cells (PBMCs) from patients [33]. 
On the other hand, TRESK was detected in patients with acute lymphoblast leukemia and 
lymphoma, indicating a regulatory role in lymphocyte proliferation and tumorigenesis [34].

Melanoma. TASK3 intracellular positivity was found in human melanoma tissue and 
three primary and metastatic human melanoma cell lines (WM35, HT199, and HT168-M1) 
[35], while KCNK5 was downregulated in melanoma patient samples [13]. KCNK7 was 
suggested as a disease biomarker and molecular target in melanoma patient specimens from 
a study concerned with the in silico identification and experimental validation [36].
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Table 2. Role of K2P channels in different pathological conditions The table summarizes all the findings 
on K2P channels relevant to human diseases, including altered channel expression, channel mutation, and 
genetic variants associated with different pathological conditions. The channel name is based on the IUPHAR 
nomenclature. TNBC: triple-negative breast cancer, ALL: acute lymphoblastic leukemia, HCC: hepatocellular 
carcinoma, MS: multiple sclerosis, SNP: single nucleotide polymorphism, SCD: sickle cell disease, PAH: 
pulmonary artery hypertension, IVF: idiopathic ventricular fibrillation, LQTS: long QT syndrome, FHEIG: 
facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth 
syndrome, BBMRS: Birk Barel mental retardation syndrome, SSRIs: selective serotonin reuptake inhibitors, 
MDD: major depressive disorder, IGE: Idiopathic generalized epilepsies, T2D: type 2 diabetes, MODY: 
maturity-onset diabetes of the young, BEN: Balkan endemic nephropathy, DO: detrusor overactivity, LUTS: 
lower urinary tract symptoms, HSCR: Hirschsprung disease. CNS: central nervous system, GI: gastrointestinal 
system
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Hepatocellular carcinoma. With the help of bioinformatics and biochemical assays, 
downregulation of KCNK5, KCNK17, and KCNK2 was observed in hepatocellular carcinoma 
(HCC) specimens, suggesting K2P channels as a diagnostic biomarker for HCC [37].

Other cancers. Demethylation of long non-coding RNA (lncRNAs) in KCNK15 and WISP2 
antisense RNA 1 (KCNK15-AS1) was observed in pancreatic cancer specimens, indicating 
a correlation between epigenetic changes in KCNK15 and pancreatic carcinogenesis and 
metastasis [38]. Also, similar demethylation was found in gastric cancer patient samples 
and was due to inhibition of DNA methyltransferase 1-mitogen-activation protein kinase 
(DMNT1-MAPK) and histone deacetyltransferase 1-AKT (HDAC1-AKT) [39]. Moreover, 
the KCNK15-AS1 lncRNA axis was found to contribute to the tumor progression in lung 
adenocarcinoma tissues via MicroRNA-202 (miR-202) and miR-307 [40]. These results 
indicate that CpG island methylation and histone acetylation might be common mechanisms 
of KCNK15 modulation in post-transcription of oncogenes and tumor-suppressor genes [39] 
in several cancers despite different tumor microenvironments.

In addition to KCNK15, KCNK5 upregulation was observed in specimens from a systemic 
screening of non-small-cell lung cancer (NSCLC) and pancreatic cancer [29]. TASK3 is 
recognized as an oxygen-sensing potassium channel in the human lung cancer cell line H146, 
suggesting TASK3 as a potential modulator of solid tumor formation [40, 41]. Also, strong 
TASK3 immunoactivity was observed in human gliomas specimens and TASK3 channel 
demonstrated functional relevance to isoflurane–induced cell death in U373 and LN393 
human cell lines [42]. KCNK2 upregulation was found in the human prostate cancer cell 
lines PC3 and LNCaP due to increased cell proliferation [43]. KCNK6 was upregulated in cells 
from ovarian cancer patients, while it was downregulated in patients with colorectal and 
esophageal cancers. In CNS cancers, KCNK12 downregulation was observed in astrocytoma 
and glioblastoma specimen [13, 28, 29].

Table 3. Pathophysiological contributions of K2P channels to human diseases  The table lists currently-known 
mechanisms of K2P channels that lead to different pathological conditions. The general pathomechanisms 
include dysfunction in cell proliferation, volume homeostasis, barrier integrity, endocrine signaling, and 
electrical activities in both neurons and smooth muscle cells. MS: multiple sclerosis, RA: rheumatoid arthritis, 
SCD: sickle cell disease, FHEIG: facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental 
delay, and gingival overgrowth syndrome, HSCR: Hirschsprung disease, T2D: type 2 diabetes, IBS: irritable 
bowel syndrome. CNS: central nervous system, GI: gastrointestinal system
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Key mechanistic studies
The estrogen receptor α was found to mediate cell cycle checkpoints in cancer and 

cell proliferation by elevating KCNK5 expression in the breast cancer cell lines MCF-7 and 
T47D [44]. Also, KCNK9 upregulation promoted solid breast tumor formation due to its 
resistance to hypoxia and serum deprivation in C8 mouse embryonic fibroblast cells and 
Mus musculus mammary gland (NmuMG) epithelial cell-transferred mice [28]. As proof of 
concept, TASK3 blocking agents (zinc and methanandamide) induced cell apoptosis and 
reduced cell proliferation in the ovarian cancer cell lines SKOV-3 and OVCAR-3 [20]. A TASK3 
monoclonal antibody was proven to reduce tumor growth due to channel internalization 
and dysfunctions. In addition to breast cancer, TASK3 genetic knockdown was found to 
dampen tumor invasion in the human gastric cancer cell lines KAYO-III and MKN-45. 
BL1249, a TREK1 activator, was identified to inhibit tumor proliferation and migration via 
hyperpolarization in the human pancreatic ductal adenocarcinoma cell line BxPC-3 [45]. 
Several studies have also demonstrated the importance of intracellular potassium levels in 
T cell effector functions, tumor clearance, and cell survival through protein phosphatase A 
(PP2A)-mediated Akt-mTOR phosphorylation [46], indicating K2P channels as a promising 
candidate for anti-tumor effects in cancer therapy [31, 47].

K2P channels in autoimmune diseases

Background
Autoimmunity is characterized by a loss of immune system self-tolerance towards own 

healthy cells and tissues. The etiology is only sparsely understood, however genetic (loss and 
gain of function mutations) and environmental factors (autoantibodies, UV exposure, and 
gut microbiome) are critically involved in disease development [48]. Altered expression and 
dysfunction of potassium channels in autoimmune diseases indicate a potential role in the 
disease pathology. For example, elevated Kv1.3 expression has been shown in autoreactive 
T cells from patients with type 1 diabetes, multiple sclerosis (MS), and rheumatoid arthritis 
[49, 50].

Also, the upregulation of Kv.7 was found in ulcerative HSCR patients, contributing to 
basolateral conductance [51]. In general, potassium channels contribute to the inflammatory 
responses in autoimmune diseases by regulating hyperpolarization-induced calcium 
influx together with Ca2+ release-activated Ca2+ (CRAC) channels and stromal interaction 
molecules (STIM) [52].

Human data
Reduced TASK1 and TASK3 channel expression were found in the inflammatory lesions 

of MS patients, particularly in CD11b+ macrophages and granulocytes. TASK channels might 
regulate cell apoptosis by initiating apoptotic volume decrease (AVD) and reducing the 
inhibition towards pro-apoptotic enzymes [19]. On the other hand, KCNK9 upregulation 
was found in the colon of ulcerative colitis (UC) patients, implicating the contribution of 
KCNK9 genetic variants in UC pathogenesis [53]. TASK2 upregulation in CD8+ T lymphocytes 
was observed in the CNS of relapsing-remitting multiple sclerosis (RRMS) patients in both 
acute and chronic phases. Correspondingly, TASK2 blockers and siRNA both confirmed their 
therapeutic potential in MS by modulating T cell effector functions [18]. In addition to findings 
in MS, comparable TASK2 upregulation was discovered in the blood- and synovial fluid-
derived CD4+ T cells from RA patients and positively correlates with the DAS28 scores [54]. 
These findings indicate that TASK channel modulation might be beneficial to autoimmune 
diseases due to potassium-mediated T cell inflammatory responses.
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Key mechanistic study
In the EAE model, TASK1 and TASK3 channels were found to mediate T cell 

proliferation and cytokine production by regulating intracellular calcium concentration via 
hyperpolarization [19]. Also, TASK1 was found to regulate oligodendrocyte differentiation 
in vitro and myelination in vivo via LINGO-1/ WNK1 phosphorylation [55]. TASK3 was 
discovered to modulate cell apoptosis and neurodegeneration via inflammation-mediated 
TNF-α activation [56]. Beyond MS pathology, TASK2-mediated intracellular Ca2+ signaling 
alternations in T cell subsets was observed in a mouse model of inflammatory bowel disease 
(IBD) [57]. KCNK2 downregulation on mRNA level was identified in murine dorsal root 
ganglia (DRG) neurons, leading to increased colon mechanosensitivity and UC development 
[58]. Also, TASK1 inhibition (anandamide and A293) was beneficial to EAE due to reduced 
calcium-dependent T cell activation, proliferation, and cytokine production [17, 19, 
59]. However, TASK2 deficiency in mice showed no impact on EAE pathology due to the 
compensatory effects of TASK1 and Kv1.3 [60]. On the contrary, TREK1-/- mice demonstrated 
exacerbated EAE phenotypes accompanied by elevated CNS T cell infiltration, altered 
endothelium integrity, and higher expression of adhesion molecules (VCAM1, ICAM1, and 
PECAM1) [61]. Similarly, suppressed TREK1 expression in intestinal epithelial cells worsened 
the colon inflammation by disrupting barrier integrity via histone deacetylation 1 (HDAC) 
and p38/mitogen-activated protein kinase (MAPK) pathway [62]. In summary, K2P channels 
are involved in the development of autoimmune diseases by modulating calcium-mediated 
T cell activation, loss of barrier integrity, cell apoptosis, and eventually neurodegeneration.

K2P channels in hematologic diseases

Background
Hematologic diseases affect blood and blood-producing organs and comprise anemias, 

sickle cell disease, glucose-6-phosphate dehydrogenase deficiency, and coagulopathies [63, 
64]. Sickle cell disease (SCD) is one of the most common inherited hematologic diseases 
in regions affected by malaria worldwide and is caused by a genetic mutation in β-globin. 
SCD patients are characterized by sickle hemoglobin (HbS) and compromised red blood cell 
functions. Calcium-activated potassium channels (Gardos channels, KCNN4) contribute to 
the loss of potassium and erythrocyte dehydration in SCD. Inhibition of Gardos channels 
proved to alleviate red blood cell (RBC) dehydration and showed anti-sickling effects [65]. 
Also, a genetic mutation in Gardos channels contributes to rare anemias. For instance, 
R352H in KCNN4 was associated with decreased K+ content, increased conductance, and cell 
dehydration in hereditary xerocytosis [66, 67]. On the other hand, dehydration also occurred 
due to the loss of K+ via KCl channels [68], indicating a central role of potassium channels in 
the development of hematological diseases.

Human data
KCNK6, as a member of the K2P channel family, was highly expressed in CD34+ cells and 

identified as a disease-contributing gene in the inherited polymorphisms (SNPs) of SCD 
patients from a Genome-wide Association Study (GWAS). KCNK6 might regulate the disease 
pathogenesis by affecting erythroid differentiation and vaso-occlusive processes in SCD [69].

Key mechanistic study
Early in the 1990s, scientists suggested the association of cation ions with SCD [70, 71], 

particularly potassium loss in RBC dehydration [72, 73]. TWIK2 channels are highly 
expressed in CD34+ stem cells, the cell population associated with erythroid differentiation. 
Besides, the potassium homeostasis of erythrocytes is critical for HbS polymerization, RBC 
hemolysis, and the development of SCD [69]. However, the detailed mechanism of TWIK2 
channel contribution to SCD disease is still unclear and requires further mechanistic studies.
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K2P channels in cardiovascular disorders

Background
Cardiovascular diseases include blood vessel blockage, myocardial dysfunctions, and 

arrhythmias [74, 75]. For example, ischemic stroke is associated with blood clot formation 
and vessel blockage [76]. Diseases with myocardial dysfunctions include atherosclerosis, 
coronary arterial disease (CAD), myocardial infarction (MI), and left ventricular (LV) 
dysfunctions [77, 78]. Arrhythmias refer to disorganized electrical activities in the cardiac 
system such as tachycardia, idiopathic ventricular fibrillation (IVF), atrial fibrillation (AF), 
and congenital long QT syndrome (LQTS) [79, 80].

The physiological functions of the cardiovascular system rely on depolarization-
mediated smooth muscle tone for which K2P channels play a critical role by coordinating 
voltage-gated calcium channels (VGCC) and stabilizing the membrane potential [82]. Hence, 
K2P channels contribute to the development of cardiovascular diseases.

Human data
In the 2000s, a growing number of K2P channel studies related to the cardiovascular 

system were conducted based on the high expression in pulmonary artery smooth muscle 
cells (PASMC) [82, 83]. In addition to the high expression, several K2P channels are associated 
with the development of cardiovascular disorders. For instance, KCNK17 genetic variants were 
associated with vessel blockage, susceptibility to ischemic stroke in Caucasian, and cerebral 
hemorrhage in Chinese populations [38, 84, 85]. In addition to KCNK17, multiple KCNK5 
genetic variants were found to be a common risk factor of CAD and migraine, suggesting 
overlapping mechanisms in disease pathogenesis [86, 87]. Also, the TASK2 genetic variant 
rs10947789 was discovered as an overlapping risk gene in the blood samples of CAD and 
MI patients and was associated with increased platelet counts and volume [88]. Apart from 
being a risk factor, TASK2 channels regulated myocardial functions by modulating membrane 
potentials and respiration via oxygen chemosensitivity [89].

TASK1 channels are a common molecular target for treating arrhythmias (amiodarone, 
vernakalant, flecainide, and carvedilol), and A293, a potent and specific TASK1 blocker, 
displayed potent antiarrhythmic effects [90, 91]. Also, TASK1 inhibition was found to 
attenuate cardiovascular dysfunctions in AF patients by prolonging action potentials [92, 
93], and TASK1 missense mutation and reduced currents were observed in patients with 
pulmonary arterial hypertension [94, 95]. As a proof of concept, phospholipase inhibitor 
ONO-RS-082 was able to increase TASK1 currents in human PASMC via channel activation 
[96]. Also, decreased atrial KCNK3 expression was observed in patients with left ventricular 
(LV) dysfunction but was increased in chronic AF (cAF) patients. KCNK3 channel inhibition 
prolonged action potential (AP) duration and showed beneficial effects in cAF patients 
[97]. Therefore, TASK1 inhibitors and activators both might be beneficial for treating 
cardiovascular disorders depending on the different pathological conditions. In whole-
exome sequencing (WES) research, mechanosensitive TREK1 and TREK2 channels are highly 
expressed throughout the cardiac system. Atrial and ventricular TREK1 downregulation was 
found in AF patients and contributed to cardiac rhythmic regulation [97]. Also, a later study 
confirmed significant mRNA reduction (-80%) in the atrium of AF and HF patients, leading 
to prolonged atrial effective refractory periods [97, 98]. In whole blood samples, a point 
mutation in TREK1 increased potassium permeability, mechano-sensitivity, and contributed 
to right ventricular outflow tract (RVOT) tachycardia [99]. G88R mutation and genetic 
variants in KCNK17 were discovered in whole blood samples and induced pluripotent stem 
cell-derived cardiomyocytes to enhance channel currents, hyperpolarization, and contribute 
to the pathologies of IVF and LQTS [100, 101]. Moreover, KCNK17 was found to be sensitive 
to antiarrhythmic drugs and involved in drug working mechanisms [102]. On the other 
hand, reduced TALK2 currents in atria and ventricles were observed in patients with heart 
failure (HF) and atrial fibrillation [103]. Therefore, TALK2 activators and blockers both 
showed therapeutic potentials in treating arrhythmias and heart failure. In summary, K2p 
channels are a promising target for treating a range of cardiovascular disorders.



Cell Physiol Biochem 2021;55(S3):65-86
DOI: 10.33594/000000338
Published online: 6 March 2021 73

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Lee et al.: K2P Channels in Human Disease

Key mechanistic study
Although the mechanism of how KCNK17 modulate the susceptibility to ischemic stroke 

is still unclear, TREK1 silencing by short-hairpin RNA displayed protective effects in rat 
cardiomyocytes by decreasing cell apoptosis under ischemic injury conditions [104]. Also, in 
the transient middle cerebral artery occlusion (tMCAO) model, TASK1-/- mice displayed larger 
infarcted volumes, but TRAAK-/- mice showed preserved brain metabolism and pH. Therefore, 
TASK1 channel-induced hyperpolarization might be an intrinsic defense mechanism, while 
high levels of organic osmolytes in TRAAK-/- mice avoided ischemic-induced cell death [105, 
106].

For K2P channel modulation in myocardial functions, a naïve TREK-1-like current 
discovered in rat ventricular cardiomyocytes is activated by ATP through cytosolic 
phospholipase A2, cAMP-mediated protein kinase A (PKA), and tyrosine kinase pathways 
[107]. Also, endothelin-1 (ET-1) was discovered as a TREK1 upstream regulator in calcium-
mediated vasocontraction via Gq protein-coupled protein kinase C (PKC) signaling [108]. 
β(IV) spectrin, an actin-associated protein, was found to regulate TREK1 membrane 
trafficking by colocalization with the channel [109, 110]. Therefore, TREK1 channels might 
coordinate with G protein coupled receptors and its downstream effector proteins to 
regulate myocardial functions under physiological conditions. On the other hand, histone 
deacetylase (HDAC) inhibitors increased TREK1 expression and prolonged action potential 
duration in murine atrial cardiomyocytes, indicating that epigenetic changes also modulate 
TREK1 functions [111].

Although atrial KCNK2 expression was reduced in the AF mouse model, TREK1 specific 
deletion in fibroblasts attenuated cardiac fibrosis and dysfunctions through PKC-mediated 
oxidative stress and Jun N-terminal kinase (JNK)-mediated cell death [97, 112]. Besides, 
reduced atrial TASK1 expression was observed in an AF mouse model (CREM transgenic 
mice) and a HF disease model (transverse aortic constriction) [113] Furthermore, in TASK1-/- 

mice, prolonged action potential and QT intervals were observed in electrocardiograms, 
accompanied by reduced autonomic variability and sympathetic overactivity [114, 115]. 
However, there is currently no genetic knockout mice study or mechanistic data for the role of 
TASK2 channels in cardiovascular disorders. Propafenone, a commonly used antiarrhythmic 
drug, was found to activate the TALK2 channel with a 7.8-fold current increase in mammalian 
Chinese hamster ovary (CHO) cells. Also, TALK2 expressed in Xenopus oocytes showed 
sensitivity to most antiarrhythmic drugs, such as propafenone, quinidine, mexiletine, and 
metoprolol [102]. However, mechanistic studies of TALK2 in arrhythmias are largely missing.

K2P channels in CNS diseases

Background
Central nervous system (CNS) diseases include disorders of the brain, spinal cord, 

and nerves. Neurodevelopmental diseases affect CNS development, where mutations 
lead to abnormal brain size and dysfunctions. Psychiatric disorders are brain disorders 
characterized by abnormal mental and behavioral phenotypes. Further CNS-related diseases 
such as pain, migraine, and epilepsy are based on neuronal hyperexcitability, abnormal 
biochemical metabolisms, and aggregations. Potassium channels are a critical modulator of 
electrochemical and ion homeostasis, and the high expression and central functions of K2P 
channels in the CNS argue for an essential role in CNS diseases.

Human data
Neurodevelopmental disorders are mainly caused by familial mutations. For instance, 

FHEIG (Facial dysmorphism, Hypertrichosis, Epilepsy, Intellectual disability, Gingival 
overgrowth) is related to the KCNK4 missense mutation negatively affecting lateral 
intramembrane fenestration during CNS development [116]. Birk Barel Mental Retardation 
Syndrome (BBMRS) is a maternally transferred disease characterized by mental retardation, 
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hypotonia, and dimorphisms and caused by a KCNK9 missense mutation leading to impaired 
channel functions. Flufenamic acid (FFA) application was found to enhance TASK3 channel 
currents and improve the symptoms in younger BBMRS patients [117].

Emerging evidence also suggests a role of TASK3 channels in psychiatric disorders. For 
example, rs4736253a, a genetic locus near KCNK9, was associated with schizophrenia [118]. 
Furthermore, hypomethylated KCNK15 was associated with remission in male schizophrenia 
patients [119]. Similarly, demethylation in KCNK10 was associated with neuronal growth and 
cerebellum development in schizophrenia patients [120]. Genetic variants in KCNK2 were 
identified to influence treatment resistance in patients with major depressive disorders 
(MDD) [121].

Migraine, pain, and epilepsy are related to neuronal hyperexcitability. In migraine with 
and without aura (MA and MO), several KCNK18 mutations were associated with reduced 
neuronal current threshold and high spike frequencies [122]. Some contradictory studies 
discovered that the KCNK18 variants A34R and C110R were detectable in both migraine 
patients and controls [123, 124], suggesting that a single TRESK mutation is not sufficient to 
cause migraine. Afterward, the C110R variant in TRESK was confirmed to show preserved 
currents in human nociceptors, and only the frameshift mutation F139WfsX24 led to a loss 
of TRESK function [125]. Bupivacaine, a clinical anesthetic agent, was found to inhibit TREK1 
channels. Also, Aristolochic acid (AristA), a plant extract medicine to treat pain, enhanced 
TREK1 and TREK2 currents but inhibited TRESK currents [126]. KCNK5 was also identified 
as a risk factor for migraine from a GWAS [127], whereas KCNK16 and KCNK17 variants were 
suggested to be risk factors for idiopathic generalized epilepsy (IGE) due to altered channel 
currents and spike frequencies [128].

Key mechanistic study
There is currently no mechanistic study of K2P channels in neurodevelopmental disorders. 

However, potential mechanisms of K2P channels contributing to psychiatric disorders were 
suggested. For example, a TREK2 mutation in the protein kinase A (PKA) phosphorylation 
site abolished the norepinephrine-mediated suppression of neuronal excitability and the 
development of schizophrenia [129]. Besides, selective serotonin reuptake inhibitors (SSRIs), 
a group of commonly used antidepressants, are effective through TREK1 channel inhibition, 
among other mechanisms [130, 131]. Correspondingly, a depression-resistant phenotype 
was observed in TREK1-/- mice due to higher efficiency of 5-HT neurotransmission and 
reduced stress-mediated corticosterone levels in serum [132, 133]. In addition, spadin, a 
specific TREK1 blocker, was discovered to show anti-depressive effects by activating the 
5-HT1A receptor, the cAMP-response element (CREB), brain-derived neurotrophic factor 
(BDNF) signaling, and hippocampal neurogenesis [134, 135]. In contrast, ostruthin, an 
element extracted from plants, showed anxiolytic and anti-depressive effects by activating 
TREK1 channels, increasing channel currents, and reducing stress-mediated c-Fos signaling 
[136].

Also, TREK1-/- mice displayed hyperalgesia toward mechanical and thermal stimuli [137], 
while μ-opioid receptor-mediated TREK1 activation showed morphine-mediated analgesic 
effects without opioid-induced adverse effects [138]. Further, 11-Deoxy prostaglandin F2α, 
a TREK2 selective activator, showed analgesic effects by reducing the calcium influx in 
mouse primary dorsal root ganglia (DRG) [139], whereas TREK2 downregulation by siRNA 
induced depolarization of the nociceptors in DRG neurons and exacerbated hyperalgesia 
in rats [140]. Similarly, TRESK mutations in mouse trigeminal ganglion (TG) cells showed 
lower current threshold among action potential initiation, increased spike frequencies, and 
increased migraine susceptibility [141], whereas TRESK overexpression led to reduced spike 
formation and excitability [142].



Cell Physiol Biochem 2021;55(S3):65-86
DOI: 10.33594/000000338
Published online: 6 March 2021 75

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Lee et al.: K2P Channels in Human Disease

K2P channels in metabolic disorders

Background
Metabolic disorder refers to a deficiency in enzymes during metabolic processes, e.g., 

the metabolism of glucose, carbohydrates, amino acids, and fatty acids. Type 2 diabetes 
(T2D) is a common metabolic disorder associated with family history, chronic diseases, 
age, and obesity and is characterized by disrupted glucose-mediated insulin secretion. 
The correlation between potassium and glucose metabolism has been proposed since the 
late 1900s. For instance, potassium depletion leads to impairment in insulin secretion and 
glucose tolerance through depolarization [143, 144], while higher potassium intake reduces 
the risk of T2D development [145, 146].

Human data
In pancreatic beta cells, KCNK16 was identified as susceptibility locus of T2D from 

several GWAS in East Asian, Indian, and European populations and is involved in pancreatic β 
cell development and insulin secretion [147, 148]. Moreover, the association of KCNK16 with 
T2D was strengthened from the results of small RNA sequencing [149]. Lately, a KCNK16 gain 
of function was also identified in patients with maturity-onset diabetes of the young (MODY) 
by affecting calcium signaling and glucose-stimulated insulin secretion (GSIS) [150].

Key mechanistic study
Enriched TASK1 channel expression was found in the plasma membrane of β cells 

in both humans and rodents. TASK1 can regulate hyperpolarization by interacting with 
voltage-dependent calcium channels (VDCC), suggesting TASK1 as a modulator of calcium 
signaling and the development of T2D. As a proof of concept, TASK1 conditional deletion in 
pancreatic β cells led to increased glucose-stimulated depolarization, GSIS, and improved 
glucose tolerance [151].

The genetic polymorphism of TALK1 channel rs1535500 was associated with T2D. In 
TALK1-/- mice, increased β-cell depolarization, enhanced GSIS reduced calcium-mediated ER 
stress, and islet dysfunction were observed [152, 153]. Besides, cytokine-mediated TALK1 
inhibition showed protective effects on β-cells by facilitating calcium influx and GSIS under 
inflammation [1554, indicating modulatory functions of K2P channels in glucose tolerance 
and T2D development.

K2P channels in kidney and urinary system disorders

Background
Kidney and urinary-tract disorders include kidney dysfunctions, abnormal urinary 

filtration, and urination. Potassium channels are central modulators of resting membrane 
potential in smooth muscle cells, renal vascular cell contractility, and ion homeostasis, 
supporting a critical role in various human kidney and urinary system disorders [155, 156]. 
For instance, reduced urinary potassium excretion is associated with reduced renal mass 
and dysfunction in glomerular filtration [157]. On the contrary, elevated urinary potassium 
excretion and high potassium diet lowered the risk of chronic kidney disease development 
[158].

Human data
pH-sensitive TASK2 channels are highly abundant in the nephron of human kidneys, 

especially in tubular epithelia, and are inhibited by external acidic pH [159]. Correspondingly, 
T108P, a missense variant in KCNK5 leading to a loss of channel function, is associated with 
Balkan endemic nephropathy (BEN), a familial and chronic kidney disease [16].

For TREK1 channels, downregulated expression and reduced currents were observed 
in human detrusor overactivity (DO), an abnormal response of the bladder to physiological 
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stretches. Furthermore, DO myocytes failed to dilate while exposed to TREK1 channel 
openers, which supports the role of TREK1 in regulating bladder contraction by interacting 
with cytoskeletal proteins [160]. In addition, diminished TREK1 expression was also found 
in the SNPs of patients with lower urinary tract symptoms (LUTS) and was associated with 
urinary defects [161].

Key mechanistic study
In TASK2 deficient mice, the pH and concentration of HCO3- was reduced in the blood 

but increased in the urinary system, indicating channel inhibition and metabolic acidosis 
due to renal bicarbonate loss [162]. In TREK1-/- mice, elevated muscle tone and more 
contractile force in response to stimulations were found in myocytes. Also, TREK1-/- animals 
revealed increased micturition durations and bladder capacity. However, a mixed effect 
was observed in global knockout mice, suggesting that further studies are required with 
conditional knockout animals [163]. Besides, significant TREK1 downregulation was found 
in the obstructor myocytes of the DO mouse model after bladder obstruction [164], whereas 
channel upregulation was observed in the rat model [165], indicating the urgent need of a 
promising DO animal model for representing human patients.

K2P channels in gastrointestinal (GI) disorders

Background
Gastrointestinal (GI) disorder refers to defects in GI tracts, including the esophagus, 

stomach, intestines, and rectum. Potassium homeostasis is one vital factor, maintaining 
the physiological functions of muscle tone and motility of GI tracts. Particularly the 
mechanosensitive K2P channels are highly expressed in mechanosensory smooth muscle 
cells and Cajal cells in the human GI system [58, 166, 167], suggesting a potential for K2P 
channel modulation in the GI system.

Human data
Hirschsprung disease (HSCR) is a congenital disorder within the GI system due to 

reduced TREK1 expression and missing intestinal aganglionic and ganglionic neurons [168]. 
Also, TRAAK downregulation was observed in aganglionic and ganglionic neurons in the 
colon, indicating disrupted K2P channel functions for maintaining epithelium barrier integrity 
and contributing to the disease development of HSCR [169]. The role of mechanosensitive 
K2P channels in other GI disorders remains unknown and requires further investigations.

Key mechanistic study
The association of mechanosensitive K2P channels with GI disorders was discovered 

in the context of high channel expression in murine small and large intestines [170]. For 
example, abundant TASK2 expression was found in the murine intestinal epithelium and 
played a critical role in maintaining the anion and fluid secretions. Tetrapentylammonium, 
a TASK2 inhibitor, was found to abolish the anion secretory current [171]. Besides, altered 
potassium channel-mediated muscle contraction induces irritable bowel syndrome (IBS) 
[172]. Riluzole, a mechanosensitive channel activator, reduced the hypercontractility of 
colon myocytes, indicating TREK1 as a potential therapeutic target for the hypercontraction 
in IBS [167]. Although it is known now that mechano-gated K2P channels regulate the GI 
system by maintaining epithelial barrier integrity and smooth muscle tone contraction, the 
underlying molecular mechanisms and related signaling pathways are still unclear.
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Outlook

The growing research on K2P channels not only brings new insights into the field but 
also reveals obstacles for both researchers and physicians. The major difficulties include 
translational roadblocks, lack of modulators with high specificity, and risk of adverse effects. 
There are already several examples of failed translation in K2P channel research: TASK1 
deficient mice showed reduced T cell effector functions and ameliorated motor dysfunction, 
whereas TASK1 downregulation was found in MS patients with elevated inflammatory 
responses. Moreover, TASK2 upregulation was observed in both RA and MS patients; 
however, TASK2-/- mice showed a EAE disease course comparable with WT. The usage of 
patient-derived and -induced pluripotent stem cells and computer-based prediction models 
might be helpful to overcome the translational roadblock. Nonspecific channel modulators 
and serious adverse effects are further problems hampering human application, especially 
regarding drug development for K2P channels. For instance, the commonly used anesthetic 
bupivacaine blocks not only TASK1 and TASK3 but also TREK1 [173, 174]. TASK2 inhibition 
via class III antiarrhythmic drugs is beneficial for cardiovascular disorders but associated 
with potential adverse effects such as renal failure [175]. Structural studies of K2P channels 
on the allosteric ligand-binding site might help to identify more specific pharmacological 
modulators. Also, detailed studies on K2P channel expression and function in different 
tissues might help to predict adverse events. Besides overcoming current obstacles for 
human application with the well-studied plasma membrane-localized K2P channel, further 
research on intracellular K2P channels (e.g., THIK2 in the endoplasmic reticulum, TWIK1 
in endosomes, and TWIK2 in lysosomes) [176, 177] might open up new therapeutic 
avenues due to novel targets in the channel trafficking process. For example, TWIK2-/- mice 
demonstrated pulmonary hypertension with altered vasocontractiliy [178, 179], and TWIK2 
deficient macrophages prevented pulmonary inflammation in mice [180]. Overall, the K2P 
research field is indispensable and promises a deeper understanding of the pathophysiology 
of human disorders, allowing us to develop new diagnostic and therapeutic strategies.

Conclusion

Solid evidence suggests that K2P channels are major diagnostic and therapeutic 
candidates for several human diseases. However, the insights into the underlying molecular 
processes are only fragmentary. Nevertheless, common pathophysiological mechanisms 
can be identified as follows (Table 3): (1) aberrant cell proliferation, differentiation, 
and activation are associated with cancer, neurodevelopmental disease (FHEIG), and 
autoimmunity; (2) impaired volume regulation is associated with erythrocyte abnormalities 
in sickle cell disease; (3) dysfunction of endothelial/epithelial barrier integrity in brain and 
colon is associated with MS and HSCR; (4) altered intracellular and endocrine signaling are 
found in depression, schizophrenia, and type 2 diabetes; and (5) imbalanced electrochemical 
activities and dysregulated cellular excitability are associated with neuropathic pain, 
migraine, epilepsy, and cardiac arrhythmias as well as smooth muscle dysfunction, e.g., in 
irritable bowel disease and detrusor hyperactivity. However, to warrant further translational 
research and to develop applications for human diseases, deeper insight into the underlying 
molecular processes are required.
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