Supplementary Material

SUMO-Modification of Human Nrf2 at K¹¹⁰ and K⁵³³ Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity

Treniqka S. Walters^a Deneshia J. McIntosh^a Shalonda M. Ingram^b Lakeisha Tillery^b Evangeline D. Motley^b Ifeanyi J. Arinze^a Smita Misra^{b,c,d}

^aDepartment of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA, ^bDepartment of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA, ^cSchool of Graduate Studies and Research, Meharry Medical College, Nashville TN, USA, ^dCenter for Women's Health, Meharry Medical College, Nashville TN, USA **Supplemental Figure 1: Putative SUMO-conjugation motifs in Nrf2.** *A*. NIH's COBALT: Multiple Alignment Tool comparing amino acid sequences of Nrf2 from mouse (Accession # NP_035032.1) and human Nrf2 (Accession # NP_006155.2) Putative SUMO-conjugation motifs as predicated by SUMOplot are bold and italicized. Top two SUMO-conjugation motifs are underlined. *B*. Map of the Nrf2 domain structures showing the location of top two putative SUMO-acceptor Lysine residues predicted by SUMOplot in Nrf2 protein.

Supplemental Figure 1

A	Human	1	MMDLELPPPGLPSQQDMDLIDILWRQDIDLGVSREVFDFSQRRKEYELEKQKKLEKERQEQLQKEQEKAFFAQLQLDEET	80
	Mouse	1	MMDLELPPPGLQSQQDMDLIDILWRQDIDLGVSREVFDFSQRQKDYELEKQKKLEKERQEQLQKEQEKAFFAQFQLDEET	80
	Human	81	GEFLPIQPAQHIQSETSGSANYSQVAHI <mark>PKSD</mark> ALYFDDCMQLLAQTFPFVDDNEVSSATFQSLVPDIPGHIESPVFIATN	160
	Mouse	81	GEFLPIQPAQHIQTDTSGSASYSQVAHI <mark>PKQD</mark> ALYFEDCMQLLAETFPFVDDHESLALDIPSHAESSVFTAPH	153
	Human	161	QAQSPETSVAQVAPVDLDGMQQDIEQVWEELLSIPELQCLNIENDKLVETTMVPSPEAKLTEVD-NYHFYSSIPSMEKEV	239
	Mouse	154	QAQSLNSSL-EAAMTDLSSIEQDMEQVWQELFSIPELQCLNTENKQLADTTAVPSPEATLTEMDSNYHFYSSISSLEKEV	232
	Human	240	GNCSPHFLNAFEDSFSSILSTEDPNQLTVNSLNSDATVNTDFGDEFYSAFIAEPSISNSMPSPATLSHSLSELLNGPIDV	319
	Mouse	233	GNCGPHFLHGFEDSFSSILSTDDASQLTSLDSNPTLNTDFGDEFYSAFIAEPSDGGSMPSSAAISQSLSELLDGTIEG	310
	Human	320	SDLSLCKAFNQNHPESTAEFNDSDSGISLNTSPSVASPEHSVESSSYGDTLLGLSDSEVEELDSAPGSVKQNGPKT-PVH	398
	Mouse	311	CDLSLCKAFNPKHAEGTMEFNDSDSGISLNTSPSRASPEHSVESSIYGDPPPGFSDSEMEELDSAPGSVKQNGPKAQPAH	390
	Human	399	SSGDMVQPLSPSQGQSTHVHDAQCENTPEKELPVSPGHRKTPFTKDKHSSRLEAHLTRDELRAKALHIPFPVEKIINLPV	478
	Mouse	391	SPGDTVQPLSPAQGHSAPMRESQCENTTKKEVPVSPGHQKAPFTKDKHSSRLEAHLTRDELRAKALHIPFPVEKIINLPV	470
	Human	479	VDFNEMMSKEQFNEAQLALIRDIRRRGKNKVAAQNCRK <mark>R</mark> KLENIVELEQDLDH LKDE KEKLLK <mark>EKGEN</mark> DKSLHLLKKQLS	558
	Mouse	471	DDFNEMMSKEQFNEAQLALIRDIRRRGKNKVAAQNCRK <mark>R</mark> KLENIVELEQDLGH LKDE REKLLREKGENDRNLHLLKRRLS	550
	Human Mouse	559 551	TLYLEVFSMLRDEDGKPYSPSEYSLQQTRDGNVFLVPKSKKPDVKKN 605 TLYLEVFSMLRDEDGKPYSPSEYSLQQTRDGNVFLVPKSKKPDTKKN 597	

Supplemental Figure 2: SUMO-acceptor K residues are needed for transactivation of the hNrf2 and stability of HO1 protein. HEK293T cells were transfected with plasmid for either FLAG-tagged WT or mutant hNrf2 (K¹¹⁰R, K⁵³³R, or 2K) for 24 hrs. The transfected cells were treated with 100 μ M Cycloheximide (CHX) for 0, 5, 15, 30, and 60 min. Total cell lysates were resolved on a 7.5% SDS-PAGE gel and analyzed by western blotting using anti-FLAG and anti- β -actin antibodies. *A*. Representative HO1 and Histone-H3 blots are shown. *B*. Densitometric quantitation of the blots in *A*. The levels of HO1 were normalized to those of Histone-H3. The normalized values at 0 min were designated as 100%. Subsequent normalized values were calculated as percentages of those at 0 min. ImageJ software was used for quantitation. The values plotted are means ± S.E (n=3).

Min