Supplementary Material

Elaborating the Physiological Role of YAP as a Glucose Metabolism Regulator: A Systematic Review

Ardo Sanjaya^{a,b} Hanna Goenawan^{c,d} Iwan Setiawan^c Julia Windi Gunadi^e Yenni Limyati^{f,g} Ronny Lesmana^{c,d,h}

^aGraduate School of Biomedical Science, PMDSU Program Batch V, Universitas Padjajaran, Bandung, Indonesia, ^bDepartment of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia, ^cDepartment of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, ^dDivision of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia, ^eDepartment of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia, ^fPhysical Medicine and Rehabilitation Department, Unggul Karsa Medika Hospital, Bandung, Indonesia, ^gFaculty of Medicine, Maranatha Christian University, Bandung, Indonesia, ^hCenter of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia Supplementary Table 1 Summary table of studies excluded during the full-text review and their reasons for exclusion

No.	Author	Species	Intervention	Reason for Exclusion
1	Yu, et al. [65]	In vitro:	Streptozotocin	The research did not establish a causal link
		Mice C57BL/6J		between high glucose and YAP / Hippo
				pathway levels.
2	Li, et al. [66]	In vitro:	High glucose	The research did not establish a causal link
		Human renal mesangial	treatment	between high glucose and YAP / Hippo
		cells	Liraglutide	pathway levels.
		Human podocyte cells	siRNA against <i>Sirt3</i>	
3	Lei, et al. [67]	In vivo:	Quercetin	The study did not explore aspects of glucose
		C57BL/KSJ db/db mice		metabolism.
		In vitro		
		Mouse Glomerular		
		mesangial cells SV40		
		MES13		

4	Xing, et al. [68]	In vivo:	Fufang	The study did not explore aspects of glucose
		Monkey choroid-retina	Xueshuantong	metabolism.
		RF/6A	extracts	
			shRNA against YAP	
5	Dixit, et al. [69]	In vitro:	Chaetocin	The study did not explore aspects of glucose
		A172; U87MG; T98G	siRNA against YAP	metabolism.
6	Fujisawa, et al. [70]	In vitro:		The study did not explore aspects of glucose
		Human hepatic stellate		metabolism.
		cells		
7	Li, et al. [71]	In vitro:	Liraglutide	The study did not explore aspects of glucose
		3T3-L1	siRNA against	metabolism.
			MST1	

The table is sorted according to the reason for exclusion. Only one main reason for exclusion is stated in this table.

No	Author	Species	Intervention	Findings Summary	Groupings
•					
1	Wang, et al. [16]	In vitro	Glucose starvation	Low glucose increased YAP	Energy
		HEK293A;	and administration of	phosphorylation at S127.	status
		MDA-MB-231;	2DG.	Without energy stress, YAP translocated to	
		SUM159	Administration of	the nucleus and increased the transcription	
			YAP5SA	of CTGF, CYR61, and ANKRD1.	
				AMPK phosphorylated YAP at S61.	
				Active YAP increased glycolysis, as shown	
				by the lower pH value of the medium.	
				Overexpression of YAP upregulates	
				GLUT3 expression.	
2	Mo, et al. [43]	In vitro:	Glucose starvation	Glucose starvation activated LATS activity.	Energy
		НЕК293А;	and 2DG treatment.	Expression of active AMPK induced YAP	status
		HEK293P;		phosphorylation.	

No	Author	Species	Intervention	Findings Summary	Groupings
•					
		НЕК293Т;	AMPKα1 and	Energy stresses induced the inhibition of	
		H235; NIH3T3;	AMPKa2 expression	YAP/TAZ through LATS and AMPK.	
		C2C12; HeLa		AMPK phosphorylated YAP at S94.	
3	Zhang, et al. [20]	In vitro:	Glucose treatment	O-GlcNAcylation increased YAP function.	Energy
		Bel-7402;	OGT overexpression	O-GlcNAcylation inhibited the interaction	status
		SMMC-7721		between β TrCP and YAP, thereby limiting	
				its degradation.	
				Glucose treatment increased YAP	
				expression and endogenous YAP O-	
				GlcNAcylation	
				YAP overexpression upregulated OGT,	
				Nudt9, and SLC5A3 expression	
4	Nokin, et al. [39]	In vitro:	Methylglyoxal	Methylgyoxal (MG) induced YAP	Energy
			treatment	nuclearization and transcriptional activity.	status

No	Author	Species	Intervention	Findings Summary	Groupings
•					
		MDA-MB-231;		MG significantly decreased the LATS1	
		MDA-MB-468;		protein level.	
		MCF7			
5	Peng, et al. [37]	In vitro:	shRNA against YAP	The hexosamine biosynthesis pathway	Energy
		НЕК293Т;	YAP KO Cell line	through O-GlcNAcylation directly	status
		HeLa; L3.6		promotes YAP activity and is dependent on	
				extracellular glucose.	
				O-GlcNAcylation of YAP activated its	
				function by inhibiting interaction with	
				LATS1.	
				YAP-TEAD regulated the transcription of	
				OGT and, therefore, O-GlcNAcylation.	
6	Liu, et al. [65]	In vitro:	High glucose	Although normally AMOT inhibited YAP	Energy
				function by decreasing YAP's nuclear	status

			- mango ~ anning j	Groupings
	Bel-7402;	Streptozotocin	translocation, O-GlcNAcylation of AMOT	
	SMMC-7721	treatment in vivo	increased YAP translocation during high	
	In vivo:		glucose conditions.	
	Mice models		Streptozotocin treated mice highly	
			expressed AMOT and YAP in the liver with	
			bot located inside the nuclear compartment	
luang, et al. [42]	In vivo:	High glucose	High glucose decreased total RhoA protein	Energy
	C57BL/Ksj,	siRNA against <i>RhoA</i>	levels in mice podocyte.	status
	db/db diabetic	and YAP	YAP expression levels in the nucleus were	
	mice		decreased both in high glucose treated	
	In vitro:		podocyte and <i>RhoA</i> knockdown.	
	Immortalized			
	mouse podocyte			
	and renal			
	uang, et al. [42]	Bel-7402; SMMC-7721 In vivo: Mice models uang, et al. [42] In vivo: C57BL/Ksj, db/db diabetic mice In vitro: Immortalized mouse podocyte and renal	Bel-7402; Streptozotocin SMMC-7721 treatment in vivo In vivo: Mice models uang, et al. [42] In vivo: High glucose C57BL/Ksj, siRNA against RhoA db/db diabetic and YAP mice In vitro: Immortalized mouse podocyte	Bel-7402; Streptozotocin translocation, O-GlcNAcylation of AMOT SMMC-7721 treatment <i>in vivo</i> increased YAP translocation during high <i>In vivo</i> : glucose conditions. Mice models Streptozotocin treated mice highly expressed AMOT and YAP in the liver with bot located inside the nuclear compartment uang, et al. [42] <i>In vivo</i> : High glucose db/db diabetic and <i>YAP</i> YAP expression levels in the nucleus were mice decreased both in high glucose treated <i>In vitro</i> : podocyte and <i>RhoA</i> knockdown. Immortalized mouse podocyte

No	Author	Species	Intervention	Findings Summary	Groupings
•					
		biopsies from			
		diabetic			
		nephropathy			
		patients			
8	Enzo, et al. [27]	In vitro:	Administration of	Reduction of glycolysis reduced YAP/TAZ	Glucose
		MCF10A;	2DG.	activity.	metabolism
		MDA-MB-231	siRNA treatment of	Knockdown of PFK1 inhibits YAP/TAZ	
			PFK1 and YAP/TAZ	activity	
				Inhibition of glycolysis reduced	
				YAP/TEAD interaction	
9	Cox, et al. [35]	Zebrafish.	Transgenic <i>yap</i> ^{-/-}	<i>Yap</i> ^{-/-} mutants have a significantly lower	Glucose
		Cancer Cell Line	mutant embryos	level of <i>glut1</i> and <i>glut2</i> .	metabolism
		Encyclopedia		Gene expression data revealed a strong	
				positive correlation between YAP1 and	

No	Author	Species	Intervention	Findings Summary	Groupings
•					
				GLUT1, with no correlation between YAP1	
				and <i>GLUT2</i> .	
10	Li, et al. [34]	In vitro:	Ajuba	Overexpression of Ajuba increased GLUT1	Glucose
		SGC-7901	overexpression	expression, and this effect is mediated	metabolism
			YAP siRNA	through YAP.	
11	Zheng, et al. [22]	In vitro:	YAP5SA expression	BCAR4/GLI2 was a downstream target of	Glucose
		MDA-MB-231	BCAR4/GLI2	YAP and mediated the increased glycolysis	metabolism
			overexpression	caused by YAP overexpression.	
				YAP overexpression upregulated HK2 and	
				PFKFB3.	
12	Shen, et al. [66]	In vitro:	Verteporfin treatment	YAP regulates the expression of <i>PGAM1</i>	Glucose
		MG63; MNNG-	shRNA against	through c-Myc.	metabolism
		HOS; Saoa-2	SIPR3	Inhibition of YAP-TEAD interaction using	
				Verteporfin failed to inhibit glycolysis.	

No	Author	Species	Intervention	Findings Summary	Groupings
	Kuo et al [19]	In vitro:	Administration of	GLUT3 protein overexpression upregulates	Glucose
15		111 11110.	Administration of	SECTS protein overexpression upregulates	Olucose
		HCT116; 116-	2DG	YAP dependent target genes	metabolism
		LM; HT29	shRNA against YAP	YAP knockdown or 2DG treatment	
				decreased the expression of GLUT3, HK1,	
				GPI, PGK1, and ALDOA.	
14	Mi and Kuang [67]	In vitro:	Melatonin treatment	YAP depletion downregulated GLUT3	Glucose
		Hep3B; HepG2	YAP plasmid	protein and mRNA expression	metabolism
			transfection		
			siRNA against YAP		
15	Song, et al. [24]	In vitro:	Plasmid transfection	YAP, along with FOXC2, regulated HK2.	Glucose
		CNE1; CNE2		Overexpression of FOXC2 or YAP	metabolism
				increased HK2 protein and mRNA levels.	
16	Yan, et al. [25]	In vitro:	Verteporfin	YAP is a downstream regulator of	Glucose
				hepatocyte growth factor.	metabolism

No	Author	Species	Intervention	Findings Summary	Groupings
•					
		AsPC-1; BxPC-	Recombinant Human	YAP overexpression increased HK2	
		3; CFPAC-1;	hepatocyte growth	expression	
		Panc-1;	factor.		
		MiaPaCa-2			
17	Mammoto, et al. [29]	In vitro:	Plasmid construct of	The knockdown of TEAD decreased the	Glucose
		HUVE	YAP1, YAP1-	expression of PGC-1 α mRNA and protein	metabolism
			S127A, and PGC-1α.	levels.	
			shRNA against PGC-	YAP S127A overexpression increased	
			1α	PGC-1α mRNA and protein levels.	
			siRNA against <i>TEAD</i>	Overexpression of YAP increased the	
				extracellular acidification rate (ECAR) and	
				glycolytic reserve.	
18	Cosset, et al. [17]	In vitro:	Verteporfin	YAP/TAZ knockdown decreased GLUT3	Glucose
				protein expression	metabolism

No	Author	Species	Intervention	Findings Summary	Groupings
•		LI87MG.	shPNA against		
		08/100,	siikiva agailist		
		LN229; U251	YAP/TAZ		
19	Wang, et al. [36]	In vitro:	siRNA against	TEAD knockdown decreased GLUT1	Glucose
		Hep-2	TEAD	protein expression	metabolism
20	White, et al. [18]	In vitro:	shRNA against	YAP/TAZ knockdown decreased HK1,	Glucose
		SN12C	YAP/TAZ	PFKFB4, HK2, PFKP, GAPDH, PGK1,	metabolism
				PGAM1, LDHA1, PDHB levels	
21	Wang, et al. [28]	In vitro:	2DG treatment.	2DG treatment increased LATS1	Glucose
		Neonatal mouse		phosphorylation and, thus, YAP	metabolism
		cardiomyocytes.		phosphorylation and inhibition.	
22	Yin, et al. [26]	In vitro:	siRNA HK2 and	HK2 affected YAP / TAZ gene activity.	Glucose
		AKR-2B	siRNA YAP/TAZ	And vice versa	metabolism

No	Author	Species	Intervention	Findings Summary	Groupings
•					
23	Menini, et al. [38]	In vivo:	Streptozotocin	High glucose increased the accumulation of	Glucose
		Transgenic mice	High glucose	advanced glycation end products.	metabolism
		In vitro:	Methylglyoxal	In vitro studies showed that AGE precursors	
		PaCa-2; Panc-1	Νε-	and preformed AGE increased cell	
			carboxymethyllysine	proliferation by activating YAP1	
			FL-926-16	MGO affected YAP by decreasing LATS1	
			siRNA against YAP	protein levels.	
			and EGFR	CML induced EGFR phosphorylation, and	
				EGFR knockdown reversed YAP1 nuclear	
				translocation.	
24	Chen, et al. [21]	In vitro:	Gene knockdown	YAP knockdown inhibited expression of	Glucose
		Hepa1-6;	using shRNA	GLUT1, HK2, ALDOA, and LDHA.	metabolism
		HepG2; Hep3B;			; hypoxia
		HuH7			

No	Author	Species	Intervention	Findings Summary	Groupings
•					
				<i>YAP</i> knockdown abolished the effect of	
				hypoxia-induced expression of GLUT1,	
				HK2, ALDOA, and LDHA.	
				YAP/HIF-1α complex formation was found	
				in the cell nucleus.	
25	Hu, et al. [30]	In vitro: Primary	Liver-specific YAP	Constitutively active YAP inhibits G6PC	Glucose
		mouse	S127A expression.	and PCK1 expression	metabolism
		hepatocytes		YAP overexpression in vivo decreased	; Insulin &
		In vivo: Mice		random blood glucose levels and increase	Glucagon
				glucose tolerance.	control
				YAP altered the ability of PGC1 α to bind	
				gluconeogenic gene promoter	
26	Pocaterra, et al. [31]	In vivo:	Transgenic mice with	Inactivation of <i>Capzb</i> in mice hepatocytes	Glucose
		C57BL/6 N	liver-specific	increased YAP activity.	metabolism

No	Author	Species	Intervention	Findings Summary	Groupings
•			knockout of <i>Capzb</i> ,	<i>Capzb</i> liver knockout produce the same	; Insulin &
			Yap1, and Wwtr1	metabolic phenotype as liver YAP	Glucagon
				overexpression, which is increased glucose	control
				tolerance and decreased Pck1, G6pc, and	
				Fbp1 expression	
27	Zhang, et al. [48]	In vitro:	YAP siRNA	Hypoxia increased YAP translocation into	Нурохіа
		HepG2; Huh7		the cell nucleus.	
				The increase in glycolysis in hypoxic cells	
				is abolished by YAP knockdown.	
				YAP formed a complex with HIF-1 α to	
				bind to the PKM2 gene promoter and	
				sustained HIF-1α stability.	

No	Author	Species	Intervention	Findings Summary	Groupings
•					
				YAP knockdown decreased the protein and	
				mRNA expression of PKM2 during the	
				hypoxic condition	
28	Li, et al. [68]	In vitro:	Verteporfin treatment	Inhibition of YAP-TEAD interaction using	Нурохіа
		MKN-45	Plasmid transfection	Verteporfin significantly decrease the	
			for YAP	protein and mRNA levels of HK2 and	
			overexpression	PFK1	
				YAP overexpression upregulated <i>HIF-1</i> α in	
				gastric cancer cells.	
29	Sayedyahossein, et al.	In vitro:	siRNA against YAP	Insulin increased YAP phosphorylation,	Insulin &
	[32]	HepG2; C2C12	Insulin treatment	thereby inhibiting its function through the	Glucagon
				Pi3K signaling cascade	control

•			Inter vention	r inungs Summary	Groupings
				Insulin reduced the expression levels of	
				G6PC and PCK1, and these effects are	
				further pronounced by YAP knockdown	
30	Yu, et al. [49]	In vitro:	Glucagon treatment	LPA and S1P regulate YAP activity	Insulin &
		Primary Mouse	Serum starvation	through their influence on the actin	Glucagon
		Hepatocytes		cytoskeleton.	control
				Glucagon stimulates YAP phosphorylation	
				in primary mouse hepatocytes.	

The table is sorted according to the categorical grouping. Articles with multiple categories meant the article's findings are used in more than one

topic.

Abbreviations:

2DG: 2-deoxyglucose AGE: Advanced glycation endproduct ALDOA: Aldolase A AMOT: Angiomotin AMPK: AMP-activated protein kinase ANKRD1: Ankyrin Repeating Domain 1 CML: Nɛ-carboxymethyllysine CTGF: Connective tissue growth factor CYR61: Cysteine rich angiogenic inducer 61 ECAR: Extracellular acidification rate FBP1: Fructose-1,6-Bisphosphatase 1 FOXC2: Forkhead Box C2 G6PC: Glucose-6-phosphatase catalytic subunit GAPDH: Glyceraldehyde-3-phosphate dehydrogenase GLUT (1,2,3): Glucose Transporter (1,2,3) GPI: Glucose-6-phosphate isomerase HK (1,2): Hexokinase 1 & Hexokinase 2 LATS: Large tumor suppressor kinase LDHA: Lactate dehydrogenase A LPA: lysophosphatidic acid MG: methylglyoxal Nudt9: Nudix Hydrolase 9 PCK1: Phosphoenolpyruvate carboxykinase 1 PDHB: Pyruvate dehydrogenese E1 Subunit Beta PFK1: Phosphofructokinase 1 PFKFB3: 6-Phosphofructo-2-Kinase 3 PFKFB4: 6-Phosphofructo-2-Kinase 4 PGAM1: Phosphoglycerate Mutase 1

PGC1-α: Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha PGK1: Phosphoglycerate Kinase 1 PI3K: Phosphatidylinositol 3-kinases PKM2: Pyruvate kinase M2 PFKP: Phosphofructokinase, Platelet S1P: Sphingosine 1-phosphate SLC5A3: Solute Carrier Family 5 Member 3 TEAD: TEA Domain Transcription Factor YAP: Yes-Associated Protein