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Abstract
The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an 
acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes 
with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, 
and phosphatases that are able to degrade extracellular and intracellular components. It is 
well known that lysosomes act as a center for degradation and recycling of large numbers 
of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are 
recognized as key organelles for cellular clearance and are involved in many cellular processes 
and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its 
related pathways are of particular importance in vascular regulation and related diseases. In 
this review, we highlighted studies that have improved our understanding of the connection 
between lysosome function and vascular physiological and pathophysiological activities in 
arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizing-
enzymes in lysosomes play critical roles in intracellular signaling events that influence 
cellular behavior and function in SMCs and ECs. The focus of this review will be to define the 
mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is 
believed that exploring the role of lysosomal function and its sphingolipid metabolism in the 
initiation and progression of vascular disease and regulation may provide novel insights into 
the understanding of vascular pathobiology and helps develop more effective therapeutic 
strategies for vascular diseases.

Introduction

Christian de Duve, in 1974 received the Nobel Prize for his work on lysosome structure 
and functions. Lysosomes are acidic, spherical, membrane-bound organelles within a cell. 
They contain various hydrolytic enzymes that catalyze hydrolysis reactions. The synthesis 
of lysosome proteins is similar to other proteins. Hydrolytic enzymes synthesized in rough 
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endoplasmic reticulum and tagged with mannose-6-phosphate within the Golgi apparatus 
are targeted to the lysosome. Vesicles containing these hydrolytic enzymes bud off from 
the Golgi apparatus and in the cytoplasm, these vesicles bind with late endosomes. The 
late endosomes can eventually mature into lysosomes. H+-ATPase residing on lysosomal 
membrane leads to acidification of lysosomes, which facilitates the activity of various acid 
hydrolases. Entry of calcium (Ca2+) into lysosomal compartment is carried out by H+/Ca2+ 
exchange under resting condition and released under various stimulations [1, 2].

The hydrolytic enzymes within the lysosome allow them to destroy foreign particles 
via a cellular process known as phagocytosis. Lysosomes provide a defense system to the 
cell against entry of various pathogens via endocytic process before these pathogens are 
delivered to the cytoplasm [3]. The enzymes within the lysosomes work in an oxygen-
independent mechanism in killing various pathogens. In addition, the lysosomes are involved 
in breakdown of many biomolecules, misfolded proteins and damaged organelles as part of 
the recycling system of the cell [4]. Moreover, lysosomes also play an important role in oocyte 
maturation and fertilization during acrosome reaction, the sperm head contains lysosomal 
enzymes which effectively bore a hole through the egg membrane, thereby facilitating the 
entry of sperm into the egg [5].

In addition to its crucial role in phagocytosis, the lysosome has been well known to 
participate in autophagy, a catabolic process to degrade cytoplasmic components and 
organelles that maintain cellular homeostasis. The term “Autophagy” term was coined 
in the 1960s and was classified into three categories, which include microautophagy, 
macroautophagy and chaperone-mediated autophagy. Macroautophagy is a major 
regulator of catabolic mechanisms and has been well characterized in eukaryotic cells, this 
process is used to degrade damaged or long-lived proteins and organelles [6, 7]. Although 
the autophagy term was coined in 1960s, knowledge regarding its morphological and 
biochemical characteristics was unveiled in the early 1990s. In the past decade, owing to 
the discovery of yeast autophagy genes (Atg genes) followed by their identification with the 
mammalian homologues, several studies elucidated the molecular machinery of this main 
cellular homeostatic process and its regulatory mechanisms [8, 9]. The autophagic process 
involves 4 stages including induction, autophagosome (AP) formation, docking and fusion 
with lysosomes (namely, the formation of autophagolysosome (APLs) or autolysosomes), 
and breakdown of autophagic vesicles [10]. Our laboratory also focused on such mechanisms 
revealing that the normal regulation of lysosome trafficking and fusion is controlled by 
nicotinic acid adenine dinucleotide phosphate (NAADP) or ceramide as well as lysosomal 
and cytosolic Ca2+ levels [11].

Lysosomal storage disorders (LSDs) are major category of lysosome dysfunction that 
contributes to cardiovascular disorders. Deficiency of lysosomal enzymes, membrane 
transporters, or several other proteins that are involved in lysosomal biology are main causes 
of LSDs [12]. Many patients suffering from LSDs show severe cardiac phenotypes including 
coronary artery disorders. Mutational disorders in lysosomal genes have been identified 
as causative factors, which are responsible for the disease pathogenesis. For example, 
Fabry disease is caused by a deficiency in the lysosomal enzyme alpha-galactosidase A 
(α-Gal A), an enzyme involved in sphingolipid metabolism, leading to buildup of the fatty 
acid globotriaosylceramide (Gb3) in the walls of the blood vessels and other organs of the 
body [13]. Besides LSDs, lysosome dysfunction has been recently reported to play an 
important role in the development of different human diseases [14, 15]. This review will 
briefly summarize current evidences that lysosome regulation and dysfunction may be 
implicated in the pathogenesis or pathophysiology of cardiovascular diseases such as 
vascular calcification, arterial stiffening, and atherosclerosis.
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With respect to cardiovascular regulation and disease, many studies have demonstrated 
that abnormal autophagy including autophagic flux has a variety of pathogenic actions on 
the cardiovascular system. For example, Transcription Factor EB (TFEB) is a transcription 
factor, master regulator of autophagy and lysosome biogenesis genes. Macrophage-specific 
overexpression of TFEB in a mice model lead to atheroprotection. It was observed that 
overexpression of TFEB is associated with atheroprotection including reductions in plaque 
burden including apoptotic and necrotic areas [16]. Mechanistically, TFEB decreases 
accumulation of ubiquitinated and SQSTM1-enriched protein aggregates, IL1B/IL-1β 
levels, and macrophage apoptosis. TFEB stimulates endocytosis, phagocytosis that help 
macrophages to engulf apoptotic cells in atherosclerosis. In addition, TFEB drives the 
expression of lipid metabolic and mitochondrial genes via transcriptional activation of 
PPARGC1A/PGC-1α. Deficiency of lysosomal-associated membrane protein-2 (Lamp-2) 
gene, which encodes for a lysosomal membrane protein on chromosome X causes Danon 
disease, which often leads to cardiomyopathy/ heart failure. In human cardiomyocytes, 
autophagosome-lysosome fusion requires Lamp-2 isoform B (Lamp-2B). In addition, gene 
correction of Lamp-2 mutation rescues the Danon phenotype [17]. This study provided an 
evidence for cardiomyopathy in Danon patients and suggested defective Lamp-2B–mediated 
autophagy as a therapeutic target to treat this patient population.

Lysosome has been known to regulate endothelial function, and it participates in 
transmembrane signaling of different death receptors via formation of membrane rafts 
(MRs) redox signaling platforms, thereby leading to endothelial dysfunction upon different 
stimuli [18]. During atherosclerosis, lysosome-associated membrane signalosome plays a 
crucial role in endothelial injury such as abnormal leukocyte adhesion, invasion or infiltration 
of macrophages, and local oxidative stress. During atherosclerosis, macrophages uptake 
the oxidized form of cholesterol through scavenger receptors and deliver to lysosomes 
through endocytic process for degradation. Under normal condition, lysosomal acid lipase 
hydrolyzed the cholesteryl esters into free cholesterol, which is then transported in an ATP 
dependent process out of lysosomes through lysosomal Niemann-Pick type C1 protein. 
This catabolism and transport of cholesterol in lysosomes are regulated by a number of 
lysosomal molecules such as acid sphingomyelinase (ASMase), mucolipin-1, and H+-ATPase. 
Any defect in these events may cause accumulation of cholesterol into the lysosomes and 
deficient clearance of cholesterol from macrophages. These events lead to lipid deposition, 
foam cell formation and ultimately to atherosclerosis. Cardiovascular disease is the leading 
cause of death worldwide. According to the American Heart Association 2018 report [19], 
cardiovascular disease accounts for more than 800,000, or approximately one in three, deaths 
in the United States each year. Although, there are various underlying causes or causative 
factors which contribute to the pathogenesis of cardiovascular diseases, lysosome function 
is strongly correlated with the development and progression of these diseases [15]. More 
detailed information about the critical role of lysosomes in several major vascular diseases 
is discussed below.

Vascular Calcification
Vascular calcification is a pathology characterized by deposition of dispersed punctate 

or hydroxyapatite patchy crystals. It is characteristic of aging and also contributes to diabetes 
mellitus, atherosclerosis and chronic kidney disease (CKD) [20]. Vascular calcification 
localized to atherosclerotic neointima is known as intimal calcification and is detected as 
microcalcification (range: ≥0.5 to <15 μm). It is assumed that microcalcification is originated 
from apoptotic smooth muscle cells (SMC) or matrix vesicles that are released by these 
SMCs. It occurs near the internal elastic lamina and is associated with lipid deposition and 
inflammation in the neointima [21]. Vascular calcification histologically located in medial 
layer of the vessel, known as arterial medial calcification (AMC), surrounding the arterial 
medial SMCs and along the elastic lamellae is also known as Monckeberg’s medial sclerosis. 
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It reduces the arterial compliance and is prevalent in diabetes mellitus and CKD. The 
pathogenesis of AMC is still poorly understood however; the process is believed to mimic the 
skeletal bone formation [22]. AMC is a complex and highly regulated process which involves 
the reprogramming and osteochondrogenic differentiation of vascular smooth muscle cells 
(VSMCs) and secretion of calcifying matrix vesicles or apoptotic bodies generated from these 
VSMCs which initiates deposition of calcium/phosphate (Ca2+/ Pi) crystals in the arterial wall 
[23-25].

From the last decade, studies are citing the role of sphingolipids in vascular 
calcification. A study in VSMCs showed that sphingosine-1-phosphate (S1P) stimulates the 
phosphorylation of ezrin-radixinmoesin (ERM) axis increasing mineralization; however, 
inhibition of ASMase and ceramidase prevented S1P level increase, ERM activation, and 
mineralization [26]. S1P is also involved in trans-differentiation and calcification of valve 
interstitial cells that contributes to valve calcification [27]. Song et al. [28] showed that 
TLR4/NF-κB/Ceramide signaling mediates Ox-LDL-induced calcification of human VSMCs. 
In patients with cystic echinococcosis (CE), relative expression of Asah1 gene (codes for acid 
ceramidase) was low in patients with calcification [29]. In human femoral arterial SMCs, 
Ox-LDL-induced matrix mineralization was mediated via ceramide, which was attributed 
to increased neutral-sphingomyelinase (N-SMase) activity and ceramide levels [30]. 
Kapustin et al. also reported that N-SMase2 inhibition reduces mineralization in response 
to osteogenic medium in human coronary artery SMCs [25]. In sphingolipid catabolism, 
markedly increased levels of Sphingosine-1-Phosphate Lyase 1 (SGPL1) substrates, S1P and 
sphingosine was observed in the patient’s blood and fibroblasts, accompanied with adrenal 
calcifications and vascular alterations in renal biopsies, which were consistent with changes 
seen in Sgpl1 knockout mice [31]. A study in patients with coronary calcification identified 
103 lipids including the sphingolipid and sterol lipid classes might aid in better assessment 
of patients with subclinical coronary artery disease [32].

Recently, our group explored the role of lysosomal-sphingolipid metabolism in the 
vascular calcification and these findings provide the first experimental evidence in this area. 
Our findings revealed that SMC specific deletion of acid ceramidase (Ac) or overexpression 
of ASMase leads to the accumulation of ceramide in the arterial SMCs which plays a key 
role in osteogenic phenotype transition, increased small extracellular vesicle (sEV) secretion 
and mineral deposition in these cells that contribute to AMC. In addition, we found that 
GW4869, a N-SMase inhibitor significantly decreased Pi-induced calcification in coronary 
arterial smooth muscle cells (CASMCs) [33]. Moreover, ASMase inhibition by amitriptyline, 
a pharmacological inhibitor of ASMase significantly reduced CASMCs calcification both in 
vitro and in vivo [34]. These findings provide a novel insight into the molecular mechanisms 
associated with the sphingolipid-ceramide pathway required for osteogenic lineage 
reprogramming of SMCs that result in AMC, and indicate new therapeutic strategies for the 
prevention and treatment of vascular calcification. Three major molecular mechanisms as 
discussed below are proposed to address the contribution of lysosomes and related enzymes 
to the vascular calcification.

Phenotypic change of VSMCs. VSMCs can undergo phenotypic switching from contractile 
(differentiated) phenotype to synthetic (dedifferentiated) phenotype in response to various 
stimuli including growth factors, cell adhesion molecules, chemotactic factors, extracellular 
matrix (ECM) enzymes, and injury stimuli signals [35, 36]. This phenotypic transition of 
VSMCs is associated with their proliferation and is one of the major contributing factors for 
the initiation of vascular remodeling in hypertension, atherosclerosis and vascular restenosis 
[37, 38]. Synthetic or dedifferentiated VSMCs showed increased viability in proliferation, 
migration, and synthesis, and reduced expression of differentiation markers α-SMA and 
SM22-α [39, 40].

VSMCs have been shown to undergo differentiation to osteoblast-like cells. Bone-
related transcription factors, including MSX2, RUNX2, SOX9, and osterix, which promote 
osteogenesis have been found in SMCs in calcified blood vessels. Osteo inductive cytokines 
such as tumor necrosis factor-α (TNF- α) upregulate expression of the transcription factors 
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RUNX2 and osterix via activation of MSX2 and Wnt signaling pathway [22, 41]. In high-fat diet 
fed low-density lipoprotein (LDL) receptor knockout mouse model, increased serum TNF-α 
levels were found to be associated with augmented aortic expression of bone morphogenetic 
protein-2 (BMP-2), MSX2, Wnt3a, Wnt7a and aortic calcification [42]. RUNX2, a protein 
related to osteoblast differentiation in turn upregulates various bone-related proteins such 
as osteocalcin, sclerostin, and receptor activator of nuclear factor-kappaβ ligand (RANKL) 
[43]. Osterix activated a repertoire of genes during differentiation of preosteoblasts into 
mature osteoblasts and osteocytes including bone sialoprotein and alkaline phosphatase 
(ALP) [22, 44, 45].

Under normal physiological conditions, spontaneous accumulation of Ca2+/Pi levels 
are tightly balanced in the vasculature [46]. However, imbalanced mineral metabolism led 
to increased intracellular phosphate levels in VSMCs which directly drive their osteogenic 
differentiation and mineralization, inducing expression of osteogenic markers as shown in 
Fig. 1 [47, 48]. Under in vitro conditions, VSMCs exposed to a calcifying environment lost SMC 
lineage markers such as SM22α and SM α-actin and increased expression of the osteogenic 
markers such as RUNX2, osteocalcin, osteopontin, and ALP was observed [47]. In addition, 
increased expression of RUNX2 independent of downregulation of myocardin and SMC 
contractile proteins was found to be important for osteogenic switch and calcification [49]. 
Ex vivo human samples and animal models of arterial calcification demonstrated that free 
serum Ca2+/Pi levels caused ossification of soft tissue [50-52]. Increased serum Ca2+/Pi levels 
are correlated with the development and progression of calcification in human subjects 
[53]. Mineral imbalance actively stimulates phenotypic transformation of VSMCs during 
calcification process. In vitamin D (Vit D)-induced calcification mouse model, increased 
RUNX2 expression was observed [54], akin to CKD patient’s high doses of Vit D is correlated 
with severity of calcification [55]. Several in vivo studies demonstrated that physiologically 
Vit D promotes AMC through abnormal mineral metabolism (Ca2+/Pi), which as reported lead 
to vascular osteogenesis and mineralization [56, 57]. Our study in Smpd1trg/SMcre mice with 
SMC-specific overexpression of Smpd1 gene showed that lysosomal acid sphingomyelinase 
(murine gene code: Smpd1)-derived ceramide contributes to the phenotypic switch in SMCs 
which leads to AMC. A high dose of Vit D (500000 IU/kg/d) resulted in increased AMC 
associated with augmented expression of RUNX2 and osteopontin in the coronary and aortic 

Fig. 1. Phenotype switch of VSMCs 
and exosome secretion. Upon 
various stimuli VSMCs may be 
subjected to oxidative stress, ER 
stress, increased calcium (Ca2+) 
and phosphate (Pi) levels, upregu-
lation of osteogenic markers and 
phenotype change. Under such 
conditions SMCs may produce and 
release large number of exosomes 
(30-100 nm) which are composed 
of lipid bilayer membrane and 
usually carries lipids, DNA, RNA 
(Non-coding RNAs such as mRNA, 
miRNA, LncRNA, and circRNA) and 
proteins including annexins, alka-
line phosphatase, oxidant stress 
proteins and surface membrane 
proteins etc. VSMCs: Vascular 
smooth muscle cells; ER: Endo-
plasmic Reticulum.
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media, indicating phenotypic switch. However, amitriptyline, an ASMase inhibitor, reduced 
calcification and reversed phenotypic switch. These data indicate that lysosomal ceramide 
plays a critical role in phenotype change in SMCs, which may contribute to the arterial 
stiffness during the development of AMC [34]. Furthermore, our group reported that Asah1 
gene (which encodes for acid ceramidase (Ac)) deletion specifically in SMCs in Asah1fl/fl/SMcre 
mice displayed more severe AMC in both coronary arteries and aorta receiving a high dose 
of Vit D which contributed to phenotypic change in arterial medial SMCs. Marked increase in 
osteopontin and RUNX2 (osteogenic markers) was observed in the arterial media of these mice 
[33]. These findings were validated in vitro using cultured CASMCs from Asah1fl/fl/SMcre mice 
treated with high Pi. In this study, we also found that Lysosomal transient receptor potential 
mucolipin 1 (TRPML1) channels regulating lysosome interaction with multivesicular bodies 
(MVBs) contributes to this phenotypic switch in these cells. Furthermore, in another study, 
we employed Vit D-induced mucolipin knockout mice model to explore the role of TRPML1 
channel in the AMC. We found that lysosomal expression of mucolipin-1, a product of the 
mouse Mcoln1 gene, which regulates lysosomal positioning contributes to the phenotypic 
transition of arterial SMCs [58].

Exosome release and calcifying nidus formation. Vascular calcification is tightly 
controlled by a series of endogenous factors. A study under in vivo and in vitro conditions 
showed effects of lysosomal and endosomal inhibition on vascular calcification. The study 
revealed that the lysosomal inhibitor chloroquine and the endosomal inhibitor dynasore 
enhanced Ca2+/Pi-mediated VSMC calcification and promoted osteogenic transformation of 
VSMCs [59]. Moreover, ex-vivo, Pi-induced medial calcification of aortic rings was increased 
by lysosome inhibition, indicating that the endosome-lysosome system may play a protective 
role in VSMC and AMC.

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells such as 
matrix vesicles, microparticles, exosomes, ectosomes, microvesicles, MVBs and apoptotic 
bodies which are widely distributed in biological fluids [60]. They are composed of a lipid 
bilayer membrane and usually carry lipids, soluble proteins and RNA (Non-coding RNAs such 
as mRNA, miRNA, LncRNA, and circRNA) as shown in Fig. 1. Recently, EVs are hotspot for 
academic research especially exosomes, microvesicles (formerly known as microparticles) 
and apoptotic bodies [61]. The endosomal network carries out exosome formation, 
endosomes are divided into early, late, and recycled endosomes. These late endosomes 
containing internal vesicles formed following the inward budding of the outer endosomal 
membrane are called MVBs which will fuse with lysosomes and undergoes degradation [62]. 
In addition, fusion of late endosomes with plasma membrane release 30-100 nm vesicles to 
the outer space of cells that are known as exosomes [63] as shown in Fig. 1.

Exosomes also known as small EVs (sEVs) are released from stem cells, cardiomyocytes, 
ECs, SMCs platelets and adipose cells and contain potential valuable biological information, 
which contributes to the development and progression of coronary artery disease [64]. 
Cells secrete EVs in various microenvironments and into body fluids, playing a crucial role 
in cell to cell communication in neighboring regions (paracrine manner) or distant cell’s 
(endocrine) via miRNAs and other mediators in various diseases including in cardiovascular 
diseases [65, 66]. Under pathological conditions, EVs originating from VSMCs, stromal 
cells and macrophages play a crucial role in vascular calcification [67]. EVs are involved in 
various pathophysiological processes such as inflammation, proliferation, thrombosis and 
vasoactive reactions, and form microcalcifications in areas with sparse collagen within 
the cap of extracellular matrix leading to atherosclerotic plaque instability [64, 68]. These 
vesicles serve as intercellular communication messengers thus influencing vascular repair 
and remodeling by VSMC phenotypic modulation during atherosclerotic process [69].

Studies in the ECs and macrophages have shown that TNF-α and BMP-2 through the 
formation of endothelial microparticles (EMPs) contribute to the osteogenic differentiation 
and calcification of VSMCs [70, 71]. Moreover, decreased Matrix Gla protein (MGP) and Gla-
rich protein (GRP) levels may enhance VSMCs osteogenic differentiation and the release of 
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calcifying competent EVs lacking MGP and GRP inhibitors mediated by BMP-2 osteogenic 
signaling. Enhanced microcalcification in chronic renal disease points towards the 
contribution of macrophages which release calcifying EVs enriched in S100A9 and annexin 
V that may directly impact vascular calcification and mineralization [72]. Microvesicles in 
the plasma of the elderly subjects and CKD patients enriched with Ca2+ and BMP2 promote 
osteogenic transformation of VSMCs. Also, microvesicles released from aging ECs promote 
calcification of VSMCs [73]. The cross talk between ECs and VSMCs via EVs is an important 
part of vascular remodeling which affect vascular function.

Recently, our laboratory reported that increased sEV secretion from SMCs is associated 
with AMC. In the Vit D-induced calcification mice model, we observed increased aortic and 
coronary AMC, associated with increased CD63, AnX2 (exosome markers) and ALP levels in 
the arterial wall, accompanied by reduced co-localization of lysosome marker (Lamp-1) with 
MVB marker (VPS16), a parameter for lysosome-MVB interaction [33, 34]. Increased arterial 
stiffness and elastin disorganization were also observed in these mice models. Under in vitro 
conditions, we found increased sEV secretion and decreased lysosome-MVB interaction in 
Pi-induced CASMC calcification model. Furthermore, our findings revealed that TRPML1 
channels regulating lysosome (Lamp-1, lysosome marker) interaction with MVBs (VPS16, 
MVB marker) contributes to AMC [33, 34]. In another study in Mucolipin KO mice (Mcoln1-/-) 
mice, we extrapolated these in vitro findings of role of TRPML1 channel in regulating 
lysosome interaction with MVBs and sEV secretion during AMC as shown in Fig. 2. Besides 
validating the findings regarding AMC and sEV secretion as in our pervious animal models, 
furthermore we found that Mcoln1-/- decreased co-localization of lysosome marker (Lamp-
1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as 
compared to their wild-type littermates [58] indicating abnormal lysosome positioning and 
increased sEV secretion, which may contribute to the arterial stiffness characteristic of AMC. 
These findings add to the complex mechanistic pathways involved in the development and 
progression of AMC, which may be targeted for novel therapeutic potential for ameliorating 
this detrimental disease.

Fig. 2. Cross talk between ECs 
and SMCs during atherosclerosis. 
Various danger factors act on ECs 
which may induce lysosomal traf-
ficking and fusion to cell membrane 
resulting in ceramide production 
via activation of ASMase leading 
to the formation of MR-Nox redox 
signalosomes. Nox-derived O2.- lead 
to redox regulation of vascular en-
dothelial and smooth muscle func-
tion which may lead to endothelial 
injury promoting atherosclerosis. 
SMCs switch from the ‘contractile’ 
to the ‘synthetic’ phenotype and 
migrate from the vessel’s media 
into the intima. Atherosclerotic 
plaques are characterized by an 
accumulation of lipids, cholesterol 
loaded macrophage-derived foam 
cells, chemokines and cytokines. 
SMCs: Smooth muscle cells; CER: 
Ceramide; Nox: NADPH oxidase; 
SM: Sphingomyelin; ASMase: Acid 
Sphingomyelinase; LR: Lipid Rafts.
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Abnormal extracellular matrix (ECM) metabolism. Under pathological situation, cross 
talk/intercellular communication through EVs can cause release of cytokines, excessive 
collagen, and matrix metalloproteinases (MMPs) by a large number of myofibroblasts. Thus, 
leading to valve fibrosis and remodeling thereby promoting the formation and production 
of osteoblast-like cells which ultimately lead to vascular calcification [74]. Matrix vesicles 
(MVs) contain endogenous calcification inhibitors MGP and circulating fetuin-A. During 
inflammation or mineral imbalance, VSMCs can undergo phenotypic switch to synthetic and 
promote the release of MVs, which leads to a calcified state of VSMC [25]. Physiologically, 
during vascular remodeling exosomes/sEVs derived from VSMC may drive cell adhesion, 
migration, and proliferation [25, 75]. During mineral imbalance, increased extracellular 
Ca2+/Pi led to activation of sphingomyelin phosphodiesterase 3, which resulted in increased 
VSMC exosome secretion and induced vascular calcification; however, inhibition of 
sphingomyelin phosphodiesterase 3 diminished exosome secretion and vascular calcification 
[25, 76]. During the calcification process, there is externalization of phosphatidylserine, 
accumulation of annexin A6, metalloproteinase-2, and decrease of calcifying inhibitors, 
such as fetuin A, matrix Gla protein [77-79]. In human calcified carotid and femoral 
arteries, increased sortilin facilitates trafficking of tissue nonspecific alkaline phosphatase 
(TNAP) which leads to calcification [80]. In C2C12 myoblasts and chondrocytes, BMP-2-
induced RUNX2 expression stimulates sphingomyelin phosphodiesterase 3 suggesting 
a cross talk between exosome generation and osteogenic genes [81, 82]. As reported that 
vascular calcification is initiated by exosomes which are loaded with Gla [carboxyglutamic 
acid]-containing coagulation factors: IX and X, prothrombin, and proteins C and S [78, 
83]. Prothrombin is a novel circulating vascular calcification inhibitor which activates 
coagulation pathways via Gla/ phosphatidylserine binding to exosomes. Hence, gradual 
loading of exosomes with prothrombin and prothrombin activation products diminishes 
both procalcification and procoagulant activities by Gla/ phosphatidylserine interactions, 
which will lead to vascular ECM remodeling and arterial wall degeneration [84].

In addition, endolysosomal system plays an important role in protein degradation, which 
are sorted into MVBs, and these MVBs fuse with the lysosomes leading to degradation of their 
contents. Lysosome plays a multifaceted role by controlling various cellular processes [4]. 
Late endosomal/lysosomal compartment contributes to recycling of active α5β1 integrin, 
which link to ECM internalization [85]. During endocytosis, α5β1 and its ligand fibronectin 
(FN) are delivered to late endosomes/lysosomes and proteolytic degradation of the FN-
containing ECM facilitated FN endocytosis or internalization [86]. Lysosomal-ECM network 
are also involved in lysosomal related disorders such as in mucopolysaccharidosis type I 
(MPS I), lysosomal alterations in MPS I promote leakage of cathepsin B which lead to 
increased total elastase activity in the aorta, however inhibition of cathepsin B improved 
elastin breaks [87]. Moreover, collagen I protein degradation via lysosome-dependent 
pathway contributes to the phenotypic switch of VSMCs [88]. Lysosomal enzyme, 
neuraminidase1 influences the behavior of ECM molecules by altering the sialic acid 
content of various substrates, and deficiency of this enzyme causes sialidosis [89]. Another 
lysosomal enzyme arylsulfatase A stimulates adhesion of human microvascular endothelial 
cells in vitro, affecting architecture of the cytoskeleton and the distribution pattern of the 
cell adhesion-associated proteins thereby modulating cytoskeletal rearrangement, and its 
deficiency led to the manifestation of metachromatic leukodystrophy [90].

EVs contain surface polysaccharides and oligosaccharides which assemble a 
glycocalyx that regulates the interactions of EV with the target cells and the ECM through 
plasma membrane receptors, adhesion proteins and other molecules [91-93]. EVs carry 
proteoglycans such as Hyaluronan (HA), chondroitin sulfate and heparan sulfate which play 
a crucial role in their interactions with the ECM and bone mineralization [94, 95] and are 
involved in EVs function, uptake and secretion [96, 97]. In addition, MV-associated ECM 
glycoprotein tenascin C regulates bone mineralization activity [86]. EVs derived from hypoxic 
endothelial cells carry active lysyl oxidase-like 2 enzyme on their surface which facilitates 
collagen crosslinking in the ECM [87]. Presence of surface adhesion molecules and ligands 
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on EV enable their interaction with ECM components such as laminin [88] or fibronectin 
[89] via integrins, and with HA via cluster of differentiation 44 (CD44) [88]. MMPs present 
in EVs degrade the basement membranes and other ECM components such as aggrecanase, 
which act on aggrecan-rich ECM that are components of connective tissues, typical of brain 
and cartilage [90]. EV interaction with the collage matrix act as a foci for the formation 
of small hydroxyapatite crystals, leading to the calcification of the ECM in vasculature. 
Additionally, annexins, calcium-binding proteins carried by EVs contribute to the formation 
of a nucleation complex on the EVs membrane, thereby initiating the mineralization of the 
ECM in blood vessels [9, 98, 99]. Kirsch and Pfäffle [100] found that anchorin CII (annexin V), 
a component of MV, binds specifically to Type II and Type X collagen and mediates binding 
of MV to the ECM, confirming that release of MV cargo occurs in the correct environment to 
ensure proper mineralization of the ECM. These studies provided evidences that EVs carry 
and interact with ECM molecules and have potential structural and functional roles that can 
be exploited for diagnostic and therapeutic purpose.

Arterial Stiffening
Lysosomes are considered advanced organelles, which are involved in many cellular 

processes and maintain cellular homeostasis [101, 102]. Deficiency of one of eleven 
lysosomal hydrolases is linked to a group of inborn errors of metabolism known as 
mucopolysaccharidoses (MPSs). Lysosomal accumulation of glycosaminoglycans (GAGs) due 
to deficiency of these lysosomal hydrolases causes multi-systemic disease, including cardiac 
valvular dysplasia, and arterial vascular disease [103]. In MPS patients, arterial luminal 
stenosis was observed to be caused by intimal medial proliferation [104]. In addition, there 
was significantly increased carotid intima-media thickness (CIMT) [105] in patients with 
MPSs than matched controls [106]. These findings were further validated by another study 
carried out in a pediatric cohort of MPS patients by a larger, dual-center assessment of 25 
MPS Type I and II patients. The study found increased carotid artery stiffness compared to 
a healthy pediatric control cohort [107]. The etiology of augmented carotid stiffness in MPS 
patients is not only due to accumulation of GAG alone, but rather by secondary alterations of 
arterial parenchyma induced by accumulation of GAG. Arterial inflammation, proliferation of 
myofibroblasts and VSMCs, together with alterations in elastin fibrils have been detected in 
human MPS as well as in animal models [108-111], these events reduce vascular compliance 
via mechanisms mimicking the process of atherosclerosis [112].

In Fabry disease as mentioned earlier, vasculopathy is the principal clinical manifestation 
in this disease consisting of artery associated complications such as cerebral disease and 
nephropathy, but the pathophysiology is still unclear [113, 114]. Increase of lyso-compound 
globotriaosylceramide (Lyso- Gb3) in Fabry patients and its storage in the arterial media 
and subsequent proliferation of SMCs are the first indicators among manifestations 
of vascular involvement and augmented intima media thickness. Vascular endothelial 
deposits of Lyso- Gb3 lead to the activation of the local rennin-angiotensin system, and, as 
a direct consequence, there is local inflammatory and oxidative response associated with 
increased arterial stiffness and blood pressure (BP) [115]. An in vivo study demonstrated 
that arteries from adult spontaneously hypertensive rats (SHRs) had reduced lysosomal acid 
phosphatase activity, which in turn lead to decreased autophagic activity and was associated 
with increased vascular stiffness in SHRs. However, treatment with trehalose, which is 
a non-reducing disaccharide and an established autophagy activator, decreased calcium 
sensitization in SHRs and decreased vascular stiffness in these rats [116]. The study revealed 
that trehalose caused rightward shift in the stress-strain curve and a decrease in the elastic 
modulus β in mesenteric resistance arteries from SHRs. It improved mechanical properties 
of mesenteric resistance arteries in SHRs by reducing ECM deposition.

Pulse wave velocity (PWV) is directly correlated with arterial stiffness and inversely 
proportional to arterial distensibility [117]. Our study in mice demonstrated that SMC-specific 
overexpression of Smpd1, which converts sphingomyelin to ceramide, increased PWV in 
Smpd1trg/SMcre mice even before frank aortic medial calcification can be observed. This PWV 
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was further increased in Smpd1trg/SMcre mice under Vit D-treated conditions which confirms 
that increased lysosomal ceramide due to overexpression of Smpd1 gene contributes to 
arterial stiffness [34]. Further, we observed disorganized elastic lamellae with compromised 
integrity in the aortic media associated with distorted junctions of the innermost and 
outermost layers with the formation of solid plates or sheaths disorganization in the calcified 
aortas of these Smpd1trg/SMcre mice. In another study, we revealed that lysosomal expression 
of TRPML1, a product of the mouse Mcoln1 gene, contributes to the arterial stiffness [58]. 
Functionally, PWV, an arterial stiffening indicator, was found significantly increased in 
Mcoln1-/- mice with or without Vit D treatment indicating that Mcoln1 gene is associated with 
the arterial stiffness during the development of AMC. These data indicate that lysosomal 
ceramide contributed to the arterial stiffness during the development of AMC.

Atherosclerosis
Atherosclerosis is a complex multifactorial arterial disease of medium and large-size 

arteries. Several factors appear likely to have contributed to the acceleration of the coronary 
artery disease, which include hypertension, diabetes, hypercholesterolemia, smoking, 
tobacco consumption, central obesity, environmental factors and some genetic factors 
[118]. One of the original concepts for the pathogenesis of atherosclerosis was proposed 
by Virchow (1856), who suggested that inflammation plays a primary role in initiating the 
atherogenic process [119].

Atherosclerosis can be viewed as a ‘response to Injury’ model described by Russell 
Ross with lipoproteins or other risk factors as the injurious agents [120, 121]. Any kind 
of injury, may be it is physical, mechanical, chemical or infection may cause endothelial 
injury thereby, leading to endothelial dysfunction. Due to endothelial dysfunction and 
presence of oxidative stress, excess lipids and lipoproteins are oxidized resulting in the 
formation of Ox-LDL. Oxidative modification of low-density lipoprotein (LDL) and vascular 
inflammatory process are the two fundamental mechanisms, recognized widely to be 
involved in atherogenesis. In fact, cooperativity between oxidation and inflammation seems 
to be the key event in the development of early atherosclerotic lesions [122]. Atherosclerotic 
plaques are characterized by an accumulation of lipids in the arterial walls together with 
the infiltration of immunocytes (monocytes, T lymphocytes, neutrophils, mast cells). The 
up-regulation of scavenger receptors in plaque-activated macrophages are operational in 
the uptake of modified lipoprotein particles (mLp), which leads to their transformation into 
cholesterol loaded macrophage-derived foam cells as shown in Fig. 3. Accumulation of the 
latter within the plaque is a characteristic of fatty-streak type lesion, which ultimately may 
evolve to advanced fibro-lipid plaque [123]. In response to atherogenic stimuli, SMCs switch 
from the ‘contractile’ to the ‘synthetic’ phenotype and migrate from the vessel’s media 
into the intima. Plaque SMCs synthesize abnormal ECM proteins, express new adhesion 
molecules for monocytes and lymphocytes and produce various inflammatory mediators 
[124]. Matrix metalloproteinases (MMPs) (a member of gelatinase family) play an important 
role in cellular migration and processing of ECM proteins in particular plaque instability 
and rupture during arterial lesion progression [125, 126]. This section will summarize 
the contribution of autophagic process, redox signalosomes, cholesterol metabolism and 
inflammasome activation in the initiation and development of atherosclerosis. 

SMC autophagy deficiency. It is well known that lysosome function is essential for 
autophagic process in cardiovascular cells. Strong evidence is shown that autophagy may have 
both protective and detrimental roles during atherosclerosis, depending upon the status of 
autophagy or stages of atherosclerosis [127]. Given the action of autophagy in degradation of 
damaged materials, it is possible that autophagy in the arterial wall may help clean up damaged 
components and recover cells from the damage upon atherosclerotic stimuli. In addition, 
autophagy activation may interfere with cell apoptosis due to engulfment of defective or 
damaged mitochondria by autophagosomes that limits the release of proapoptotic proteins 
[128-130]. On the other hand, if acute or persistent oxidative stress occurs in atherosclerosis, 
lysosomes may be damaged to release its hydrolases, and in this way, autophagy is engaged 
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as part of oxidative stress enhancing the degree of cellular damage [130-132]. In addition, 
autophagy in different vascular cells may play different roles in atherosclerosis. For example, 
increased autophagic death of macrophages may possibly attenuate the foam cell formation, 
reducing atherosclerotic injury. However, excessive activation of autophagy in ECs may lead 
to damage of the endothelium enhancing atherogenic injury. In SMCs, enhanced autophagy 
may induce their modulation to a differentiated, quiescent, and contractile phenotype 
decreasing cell proliferation and preventing fibrosis. Nevertheless, excessive autophagy in 
SMCs may result in their death increasing the instability of atherosclerotic plaques [130, 
131, 133, 134].

Our study in coronary arterial myocytes (CAMs) demonstrated that CD38 gene deletion 
results in an impaired autophagic flux associated with blunted NAADP/lysosomal Ca2+, 
dynein activation, and autophagosomes trafficking. Impaired autophagic flux promotes 
CAM dedifferentiation, proliferation, and growth, which stimulates ECM production thereby, 
contributes to coronary arterial smooth muscle remodeling accelerating atherosclerosis 
[135]. Furthermore, we demonstrated that impaired autophagy due to CD38 gene deletion 
blocks collagen I degradation in CAM, and resulted in collagen I-deposition mainly in 
lysosomes and autophagosomes which resulted in coronary arterial fibrosis, a characteristic 
feature of atherosclerosis [136]. In addition, defective autophagic flux due to deficiency of 
ASMase-mediated regulation of lysosome trafficking and fusion to APs in CASMCs caused 
imbalance of arterial smooth muscle homeostasis leading to coronary atherosclerosis 
during hyperlipidemia or hypercholesteremia [137]. Recently, our study showed that GDF11 
blocked dedifferentiation and autophagosome accumulation in CD38 deficient CASMCs 
under in vitro and in vivo conditions, which is associated with reduced neointima formation 
in the partial ligated carotid arteries [138].

Redox signalosomes in endothelial injury. Cross talk between lysosome-membrane and 
membrane raft (MR) signaling platforms have been shown to regulate endothelial function 
and lead to endothelial injury upon pathological stimuli [18]. These MR redox-signaling 
platforms consist of a multiple protein complex which uses lipid rafts (LRs) or MRs as a 
platform to control redox signaling. Various agonists such as FasL, TNF-α, TRIAL, endostatin, 
visfatin and other stimuli were found to stimulate the formation of MR clusters on the ECs 

Fig. 3. Schematic model demonstrating lysosomal sphingolipid-mediated exosome secretion from SMCs 
during vascular calcification. Lysosomal sphingolipid metabolism regulates TRPML1-mediated Ca2+ release 
from lysosomes, which controls lysosome trafficking and fusion with MVBs via , and thereby controlling 
the fate of these MVBs. Due to deficient lysosome trafficking or fusion to MVBs, MVBs  fuse with the plasma 
membrane, which is associated with exosome excretion in arterial SMCs during vascular calcification. SMCs: 
Smooth muscle cells; CER: Ceramide; SM: Sphingomyelin; ASM: Acid Sphingomyelinase; AC: Acid Cerami-
dase; TRPML1: Lysosomal transient receptor potential mucolipin 1; MVB: Multivesicular Body.
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membrane which result in the formation of endothelial redox signalosomes [139, 140]. It 
has been demonstrated that NADPH oxidase (Nox) subunits clustering and its activation is 
central to the formation of endothelial redox signalosome [18]. In addition, there are various 
receptors, which may bind to agonists and stimulate the formation of signalosomes as well 
as molecules promoting MR platform formation and functions. In this context, ASMase has 
been found to be an important enzyme, which activates or facilitates the formation of MR 
redox signalosomes. MR redox signalosomes produce O2

.- and lead to redox regulation of 
cell and organ functions as depicted by O2

.- production in isolated MR fractions from cells 
stimulated by FasL or other stimuli [141-143]. This Nox-derived O2

.- leads to redox regulation 
of vascular endothelial and smooth muscle function, and excess generation of these O2

.- may 
lead to endothelial injury promoting atherosclerosis as shown in Fig. 3 [144, 145]. In brain 
ECs, polychlorinated biphenyl-induced LR-dependent Nox/JAK/EGFR signaling regulates 
the expression of cell adhesion molecules and increases the adhesion of leukocytes to 
endothelial monolayers [146]. Another study reported inactivation of Nox by high-density 
lipoprotein (HDL), which may be via interrupting the assembly of Nox subunits at MRs 
that may contribute to the protective actions of HDL in vasculature against inflammation-
mediated oxidative damage [147].

As mentioned earlier, that lysosome dysfunction has detrimental impacts on various 
cellular processes and has been characterized in numerous cardiovascular diseases [15]. Our 
findings [148, 149] and others [150, 151] revealed that under different pathological stimuli, 
lysosomes are rapidly fused into the cell membrane leading to secretion of ASMase locally 
or attached to the surface of the cell membrane. Various danger factors act on ECs which 
may induce lysosomal trafficking and fusion to the cell membrane resulting in ceramide 
production via activation of ASMase thereby leading to formation of MR-Nox redox signaling 
platforms as shown in Fig. 3. Upon sustained injuries, interaction of various signaling 
molecules in these redox signaling platforms lead to formation of signalosomes, which 
produce O2

.- and induce endothelial dysfunction, resulting in atherogenesis [152]. Reactive 
oxygen species (ROS) -induced increased activation of lysosomal ASMase is known to be a 
key contributor for the formation of these MR-Nox redox signaling platforms. ASMase dimer 
formation by modification of the free C-terminal cysteine is required for enhancement of 
ASMase activity promoting MR platform formation [153, 154]. A study showed that selective 
activation of lysosomal ASMase by pharmacological intervention enhanced lysosome 
trafficking and fusion to the MR area on the plasma membrane in ECs [155]. Recently, our 
study demonstrated that acid sphingomyelin and ceramide signaling via the formation of 
MR redox signaling platforms induced the endothelial Nlrp3 inflammasomes formation 
and activation during hypocholesterolemia, which lead to endothelial dysfunction, cell 
phenotypic transition and vascular inflammation, and consequent atherosclerosis [156]. In 
another study, in cultured ECs (EOMA cells), we observed that inhibitory action of butyrate 
on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling 
platforms which produce O2

.- upon 7-ketocholesterol [7-Ket] or cholesterol crystals (CHC) 
stimulations [157]. Lysosomal membrane damage is another important role of lysosomes 
in vascular regulation. Damage to lysosomal membrane may be due to excess production or 
accumulation of ROS leading to alteration of the lysosomal compartments. This may prevent 
lysosomal fusion with autophagic vacuoles containing damaged components, and release of 
potent hydrolases [6]. Enhanced intracellular oxidative stress and lysosome amplification 
via release of lysosomal enzymes will cause cell death, which may lead to the destabilization 
of atherosclerotic plaques if occurring in SMCs. Destabilization of atherosclerotic plaques 
occurs due to the reduced synthesis of collagen and thinning of the fibrous cap. In addition, 
in ECs, cell death promotes lesioned thrombosis in the involved arteries [131, 132].

Inflammasome activation and atherosclerosis. Among the Nod-like receptor family, the 
nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 
(Nlrp3) inflammasome, has been extensively characterized compared with others, which 
oligomerize with the adaptor molecule apoptosis-associated speck-like protein containing 
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a CARD (caspase recruitment domain) (ASC), and the cysteine protease caspase-1 to form 
large cytosolic multiprotein complex called Nlrp3 inflammasome [158, 159]. This cytosolic 
multiprotein complex Nlrp3 inflammasome is required for cleavage of pro-IL-1β and pro-
IL-18 into mature IL-1β and IL-18 [132, 160, 161]. Various inflammatory disorders in humans 
may be instigated by Nlrp3 inflammasomes, including atherosclerosis [162], glomerular 
sclerosis [163], gouts [164], and type 2 diabetes [160].

Our laboratory over the last 10 years extensively explored the role of Nlrp3 inflamma-
somes in the development and progression of atherosclerosis during hyperlipidemia. In 
addition, we also found multiple actions of the inflammasome activation that are independent 
of inflammation and contribute to the development of atherosclerosis. As per literature, 
formation and activation of inflammasomes may be one of the crucial mechanistic pathways 
for many degenerative diseases such as atherosclerosis, glomerular sclerosis, Alzheimer’s 
disease and liver cirrhosis [165-167]. Upon various pathological stimuli, endothelial 
dysfunction develops at an early stage of vascular disease; our laboratory investigated the 
redox activation of Nlrp3 inflammasomes and its implication in endothelial injury. Under in 
vitro conditions in ECs we demonstrated that adipokine visfatin induced the formation and 
activation of Nlrp3 inflammasomes mediated via membrane raft redox signaling platform-
derived ROS and consequent (Thioredoxin Interacting Protein) TXNIP-Nlrp3 interaction. 
Furthermore, in the intima of partially ligated carotid arteries, our findings revealed 
increased activation of endothelial Nlrp3 inflammasomes, which locally induced vascular 
injury and inflammation. However, caspase-1 inhibitor and ASC gene knockout or silencing 
completely blocked IL-1β production in the intima [168]. In mice fed on high-fat diet (HFD) 
for 6 weeks, visfatin markedly reduced the expression of tight and adhesion junction 
proteins and increased vascular permeability via HMGB1/ RAGE signaling in the coronary 
arterial endothelium leading to the onset of metabolic vasculopathy that, ultimately, results 
in atherosclerosis [169]. Moreover, we found that during hypercholesterolemia, impaired 
endothelial dysfunction is associated with endothelial Nlrp3 inflammasome activation and 
HMGB1 pathway accompanied with increased pyroptosis independent of IL-1β signaling in 
the ECs [170]. These results were first of its kind which revealed a novel action of endothelial 
inflammasomes in endothelial dysfunction independent of canonical inflammation.

In mouse carotid arterial endothelial cells (CAECs) from ASMase wild type and gene 
knockout mice, 7-Keto or ChC markedly increased the formation and activation of Nlrp3 
inflammasomes associated with MR clustering with Nox subunits as shown by CTXB (MR 
marker) and gp91phox aggregation mediated via ROS-TXNIP signaling pathway. In vivo, 
enhanced ceramide production via ASMase result in Nlrp3 inflammasome activation 
which contributes to atherosclerotic lesions in the carotid arteries. The study revealed that 
ASMase and ceramide-associated MR clustering with Nox subunits plays a crucial role in 
endothelial inflammasome activation and dysfunction which induced neointima formation 
in the carotid arteries [156, 157]. Recently our study under in vitro and in vivo conditions 
demonstrated that autophagy inhibition and associated lysosome dysfunction induced 
the formation and activation of Nlrp3 inflammasomes [171]. 7-Keto, a proatherogenic 
stimulus enhanced Nlrp3 inflammasomes formation and activation in cultured CASMCs, 
however rapamycin, a lysosome function and autophagy enhancer decreased the 7-Keto-
induced Nlrp3 inflammasomes formation and activation. Inhibition of autophagosome (AP) 
formation by spautin-1 and blockade of lysosome function by bafilomycin increased 7-Keto-
induced formation and activation of Nlrp3 inflammasomes in CASMCs from mice. In animal 
studies, mice having CD38 gene deletion, fed on western diet (WD) showed augmented 
inflammasomes formation and activation in the coronary arterial wall. Chloroquine, 
lysosome function inhibitor, enhanced, and rapamycin blocked WD-induced formation and 
activation of the Nlrp3 inflammasome in the coronary arterial wall of these mice. The study 
concluded that upon proatherogenic stimulations, lysosome function or autophagic process 
tightly regulates Nlrp3 inflammasome formation and activation thereby controlling coronary 
arterial inflammation and medial thickening [171].
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Yuan et al. demonstrated that during hyperglycemia acid ceramidase (Ac) regulates 
the release of Nlrp3 inflammasome product IL-1β via exosomes. The study showed that 
under both in vitro and in vivo situation, Ac gene deletion significantly enhanced formation 
and activation of the Nlrp3 inflammasome leading to IL-1β production in ECs during 
hyperglycemia. This local inflammatory response in the ECs increases cell permeability and 
triggers medial thickening of coronary arteries in hyperglycemia [172]. It is conceivable that 
upon endogenous danger signals, activation of endothelial inflammasomes might be the 
initial injurious response of coronary arteries due to endothelial dysfunction, besides, the 
classical inflammatory injury which involves the activation and recruitment of inflammatory 
cells such as macrophages and T-cells and their cross talk in the arterial wall leading to 
atherogenesis. Hence, during endothelial dysfunction and injury, activation of endothelial 
inflammasomes may represent a novel early event which can be exploited as a potential 
therapeutic target to prevent initiation or exacerbation of atherosclerosis during obesity or 
hypercholesterolemia.

Abnormal macrophage cholesterol metabolism. Under normal conditions, de novo 
synthesis of cholesterol involves distinct trafficking pathways. Exogenously cholesterol enter 
into the cell via the receptor-mediated endocytosis of low-density lipoproteins (LDL) and pass 
through the endosomal/lysosomal compartment prior to its trafficking to the endoplasmic 
reticulum, the Golgi apparatus, or the plasma membrane. Binding of LDL receptor (LDLR) to 
its ligand LDL results in endocytosis of the receptor-ligand complex at clathrin coated pits 
[173]. During endocytic process, acidic environment of the endosomes catalyzes dissociation 
of LDL from the LDLR, LDLR peptide is recycled back to the membrane while as LDL particles 
are degraded into lysosomes into the lipid components and amino acids by enzymes of the 
vesicle. Lysosomal acid lipase (LIPA) hydrolyzed the lipid components, which are mainly 
cholesteryl esters, into free cholesterol [174]. Active transport of free cholesterol from 
lysosomes to the cytosol via lysosomal Niemann-Pick C1 (NPC1) protein plays a crucial role 
in the cholesterol clearance from macrophages, which may prevent the initiation of foam cell 
formation and development of atherosclerosis.

In macrophages, it has been proposed that during foam cell formation, lysosomal lipids 
accumulation has two distinct consecutive phases; the initial phase is primary accumulation 
of free cholesterol followed by the late phase of cholesteryl ester buildup. Furthermore, the 
accumulation of lysosomal cholesterol shows inhibitory effects on lysosomal V-H+-ATPase 
activity, increasing lysosomal pH. This alters the conversion of esterified cholesterol into 
free cholesterol thereby blocking cholesterol transport out of lysosomes. This vicious cycle, 
which alters cholesterol metabolism and its efflux from lysosomes, precipitates in the 
formation of foam cells. Our study in macrophages demonstrated that NAADP, a lysosome 
function regulator, plays an important role in cholesterol transport from lysosomes. NAADP 
as a CD38-derived Ca2+ messenger lead to activation of TRPML1 and functionally promotes 
free cholesterol efflux out of lysosomes. The study also showed that CD38 gene deletion in 
macrophages resulted in lysosome dysfunction, which in turn blocks lysosome dependent 
free cholesterol efflux and consequent lipid deposition leading to foam cell formation and 
development of atherosclerosis [175]. Biochemical and histochemical studies already 
confirmed that the abnormal lysosomal activity was associated with the development of 
atherosclerosis [176, 177]. During foam cell formation in macrophages, lipid accumulation 
was found within large, lipid-engorged lysosomes in both human and animal atherosclerotic 
lesions [177, 178]. These pathological changes in the foam cells in macrophages during 
atherosclerosis mimics tissue damage observed in inherited LSD, especially, mucolipidosis 
type IV [179, 180] and Niemann-Pick type C1 (NPC1) diseases [181], both of these LSD’s 
are characterized by accumulation of lipids in lysosomes or cytosol of macrophages or 
arterial wall. Therefore, the mechanisms responsible for lysosomal storage diseases such 
as malfunctioning of lysosomal enzymes or transporters, were considered to be similar to 
that of the molecular basis involved in macrophage foam cell formation and development of 
atherosclerosis [176].
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Conclusion

In this review, we summarized the roles of lysosomes in cardiovascular diseases, in 
particular, in vascular calcification, arterial stiffening, and atherosclerosis. Data provided 
by recent studies have greatly increased our knowledge of how dysregulation of lysosomal 
pathways in the cardiovascular system contributes to associated diseases. Vascular 
calcification is a disease caused by deposition of dispersed punctate or hydroxyapatite patchy 
crystals, which display phenotypic switch in arterial SMCs. Current and future research 
about the role of lysosomes in the pathogenesis of vascular calcification would introduce 
newer site-specific compounds, which may prevent the incidence and the consequences of 
the catastrophic manifestation of arterial medial calcification. Furthermore, we discussed 
the new insights into the molecular mechanisms of vascular calcification, especially the role 
of lysosomes in the development and progression of arterial medial calcification. Moreover, 
alterations in sphingolipid metabolism, in particular, lysosomal-sphingolipid metabolism 
influence major biological processes such as biogenesis and secretion of exosomes. This 
alteration in lysosomal-sphingolipid metabolism may lead to lysosome dysfunction that may 
prevent the fusion of multivesicular bodies with lysosomes, thereby increasing exosome 
secretion, which has been implicated in the development of arterial medial calcification. 
These exosomes also play a prominent role in the phenotypic switch of arterial medial SMCs 
inducing the arterial stiffness and arterial medial calcification.

Even though the basic mechanistic pathways of autophagy and various autophagy-
related genes have been well studied, there are still many challenges for their translational 
approach. In this review, we also discussed how autophagy abnormality plays a crucial role 
in the atherosclerotic process. However, the role of autophagic pathways in atherosclerosis 
needs to be further explored, which will help to develop the different pharmacological 
approaches for stabilizing vulnerable and rupture-prone plaques. Moreover, fine-tuning 
the lysosome-exosome pathway can be exploited for novel therapeutic strategies in 
cardiovascular diseases such as vascular calcification and atherosclerosis. Nonetheless, 
lysosomal dysfunction significantly contributes to disease pathogenesis and therefore 
may represent an important target for future therapeutics. A deeper understanding of 
pathophysiology of lysosomal-exosome pathways might reduce the burden of cardiovascular 
disease worldwide.
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