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Abstract
The population of regulatory T cells (Tregs) is critical for immunological self-tolerance and 
homeostasis. Proper ion regulation contributes to Treg lineage identity, regulation, and 
effector function. Identified ion channels include Ca2+ release-activated Ca2+, transient receptor 
potential, P2X, volume-regulated anion and K+ channels Kv1.3 and KCa3.1. Ion channel 
modulation represents a promising therapeutic approach for the treatment of autoimmune 
diseases such as rheumatoid arthritis and multiple sclerosis. This review summarizes studies 
with gene-targeted mice and pharmacological modulators affecting Treg number and 
function. Furthermore, participation of ion channels is illustrated and the power of future 
research possibilities is discussed. 

Introduction

Regulatory T cells (Tregs) play a central role in maintaining self‐tolerance. They 
suppress unwanted or excessive immune reactions by limiting the activity of effector immune 
cells. Defects in Treg development, stability, or the suppressive mechanisms of Tregs are 
associated with several autoimmune diseases, including multiple sclerosis and rheumatoid 
arthritis [1–3]. For these diseases, Treg frequency is a well‐characterized parameter, and 
fluctuation patterns due to disease phase and treatment regimen have been determined [4]. 
Also, a rare immune dysregulation disorder (polyendocrinopathy, enteropathy, X‐linked 
(IPEX)) is linked to mutations in forkhead box protein 3 (FoxP3), the major transcription 
factor of Tregs [5]. Tregs have been highlighted as critical contributors to immune tolerance 
breakdown in autoimmunity and represent promising therapeutic targets. Hence, novel 
therapies aim to strengthen Treg generation and stability [6]. However, the regulation of 
Tregs has its downsides. An increased Treg expansion might support pathological events 
since immune cell action against tumor cells is suppressed [7]. To fully exploit the therapeutic 
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potential of Tregs, a detailed understanding of molecular mechanisms in health and disease 
is essential.

FoxP3 is strongly expressed and considered the most prominent marker for Tregs [8]. 
Tregs belong to the CD4+ T cell compartment and are characterized by high CD25 and low 
CD127 expression in humans Treg. Thymus‐derived (tTregs) and peripherally‐induced 
Tregs (pTregs) can be distinguished, while further discrimination of Treg subpopulations is 
controversial [9]. tTregs have a high affinity for their antigen and are mainly involved in self-
tolerance. pTregs develop from conventional T cells (Tconv) during an immune response, 
cooperatively contributing to immune homeostasis [10].

The suppressive mechanisms of Tregs have not been fully elucidated yet, however 
an interplay of different milieu adapting mechanisms is likely. On the one hand, Tregs 
inhibit effector immune cells by cell‐cell contact via surface‐bound receptors, e.g. cytotoxic 
T-lymphocyte antigen 4 (CTLA-4). On the other hand, Tregs release messenger substances, 
including the anti-inflammatory cytokines interleukin 10 (IL-10) and transforming growth 
factor-beta (TGF-β), in response to T cell receptor (TCR) stimulation [11]. Also, a cytotoxic 
effect by perforin and granzyme B secretion, disruption of metabolic processes, and 
competition for signals from antigen‐presenting cells (APC) are discussed in this context 
[12–14].

Far less is known about regulatory mechanisms in Tregs themselves. The crucial role 
of ion channels for differentiation, maintenance, and activation immune cells has been 
strengthened in recent years. Ion channels participate in membrane potential regulation, 
calcium signaling pathways, and effector functions of immune cells [15, 16]. Furthermore, 
the membrane potential of CD4+ T cells is a subset-specific feature. Different subpopulations 
are characterized by specific membrane potentials that might be based on subset-specific 
ion channel expression or activity [17]. Understanding the distinct role of those ion channels 
might help to elucidate Treg regulatory mechanisms. Moreover, the dynamic pharmacological 
modulation of Treg differentiation and function by targeting ion channels might open new 
therapeutic avenues.

Therefore, the present review deals with the critical role of ion channels in controlling 
Treg lineage identity, regulation, and effector function. We summarize the literature focusing 
on gene‐targeted mice and channel modulators. The role of the Ca2+ release‐activated Ca2+ 
(CRAC) channel in Ca2+ regulation and the significant contribution of the K+ channels Kv1.3 
and KCa3.1 to the membrane potential are discussed. Moreover, we describe how transient 
receptor potential (TRP), anion (VRAC), and P2X channels affect Treg function.

Ca2+ channels

CRAC channels
Calcium is known as an essential second messenger for the development and function 

of immune cells and is engaged in Treg differentiation. The depletion of intracellular 
calcium stores entails store‐operated calcium entry (SOCE). The stromal interaction 
molecule (STIM1) is located in the membrane of the endoplasmic reticulum (ER) and senses 
intraluminal calcium. Under ER calcium depletion, STIM1 relocates to the plasma membrane 
and activates CRAC channels. The pore‐forming subunit Orai, with the three known homologs 
Orai1, Orai2, and Orai3, mediates robust and sustained Ca2+ influx in human T cells.

Human T cell subtypes show small but consistent differences in their Ca2+ signatures. 
Interestingly, the most prominent SOCE response was detected for human Tregs [18, 19]. 
Human Tregs exhibit lower expression levels of Orai2 compared to Tconv [18]. Surprisingly, 
a correlation between low Orai2 expression levels and increased SOCE magnitude was 
independently confirmed: both downregulation of Orai2 in Jurkat T cells and murine 
genetic Orai2 deletion resulted in enhanced SOCE [20, 21]. In contrast, Orai1 deficiency led 
to plummeting SOCE and CRAC currents in mice [21]. However, the overall importance of 
Orai1 and Orai2 is controversial. It was observed that Orai1 and Orai2 compete for limited 



Cell Physiol Biochem 2021;55(S3):145-156
DOI: 10.33594/000000375
Published online: 28 May 2021 147

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Vinnenberg et al.: Ion Channels on Regulatory T Cells

STIM1 molecules essential for activation under physiological conditions, and Orai2–STIM1 
complexes conduct much smaller currents compared to Orai1–STIM1 complexes [22, 23]. 
Nevertheless, Treg functions of Orai1 and STIM1 deficient mice were only moderately 
impaired, indicating that the remaining Ca2+ influx, mediated by Orai2/3 and STIM2, can 
compensate for this defect [24]. Also, combined (but not individual) deletion of Orai1 
and Orai2 was reflected in decreased Treg cell numbers in mice [21]. Moreover, STIM1/2 
deletion resulted in impaired Treg frequencies and reduced the suppressive function [25, 
26]. The abolished Ca2+ signal prevented differentiation into effector, tissue‐resident, and 
follicular Tregs [26–28]. This defect was associated with both impaired IL-2 sensing and 
nuclear translocation of the transcription factors NFAT and NF‐kB, both necessary for Treg 
development, stability and function [25, 27, 29, 30]. However, various other target genes, 
molecules, and pathways are also regulated by SOCE [31–33]. Deficiency of STIM1 and Orai1 
in humans was associated with severe combined immune deficiency (SCID), autoimmunity, 
and reduced Treg numbers [34, 35].

These data highlight the essential role of the CRAC channel‐controlled transcriptional 
network affecting Treg differentiation, expansion, and homeostasis. Yet, the underlying 
molecular mechanisms are not fully understood. Interestingly, inhibition of Calcineurin 
potentially blocked NFAT mediated T cell proliferation and FoxP3 expression in tTregs 
and pTregs. In contrast, the CRAC channel inhibitor ORAIci only affected pTregs. This way 
suggesting the existence of an independent Ca2+‐permissive channel in tTregs, that might 
compensate for abolished CRAC signaling [24]. Thus, the Treg Ca2+ signature might not be 
solely dependent on CRAC genes, which gives evidence for other yet unidentified channels 
such as TRPC3 or TRPM4 in Tregs [18].

K+ channels

K+ channels mediate continuous efflux of K+ ions and thus hyperpolarize the membrane 
potential. The best characterized K+ channels, predominantly controlling the membrane 
potential in Tregs, are the voltage-activated K+ channel Kv1.3 and the Ca2+ activated K+ 

channel KCa3.1 (or KCNN4, IKCa2+, SK4). The Kv1.3 channel is a homotetramer, and each 
α-subunit comprises six transmembrane domains (S1–S6). The voltage sensor in S4 detects 
depolarization, followed by a conformational change that opens the channel [36, 37]. In 
contrast, the tetrameric KCa3.1 channel is sensitive to intracellular Ca2+ concentration ([Ca2+]i) 
changes [38]. Ca2+ responsivity is imparted by calmodulin, which is constitutively bound 
to the KCa3.1 channel. Upon Ca2+ binding, calmodulin induces conformational changes and 
evokes channel opening [39].

By regulating the membrane potential, both channels set the threshold for calcium influx 
and are involved in antigenic activation and proliferation of T cells [15, 40]. Interestingly, 
Kv1.3 and KCa3.1 are expressed at different levels in T cell subtypes and specific states of 
activation. This expression pattern indicates adaption mechanisms to highly specialized 
tasks in immune response regulation.

However, study results are controversial and partly contradictory. For example, high 
Kv1.3 channel activity has been implicated in the pathogenesis of autoimmune diseases, 
including multiple sclerosis, type-1 diabetes mellitus, and rheumatoid arthritis [41, 42]. 
Comparative expression analysis revealed that Tregs of MS patients express fewer Kv1.3 
channels than naive cells, while this difference was not found in healthy donors [43]. 
Accordingly, modulation of Kv1.3 supports a protective channel function: upregulation 
resulted in boosted Treg proliferation, and experiments with the high-affinity Kv1.3 
antagonist eplerenone revealed diminished TGF-β and IL-10 secretion in treated Tregs [44]. 
Furthermore, inhibition of Kv1.3 in human lymphocytes led to decreased Ca2+ entry with 
larger defects monitored in CD4+ than CD8+ T cells [45]. This indicates Kv1.3 as a selective 
target in CD4+ T cells.
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In contrast to Kv1.3, inhibition of the KCa3.1 channel reduced the Ca2+ influx in CD4+ 
T cells to a lower extent than in CD8+ T cells [45]. KCa3.1 channel activity was shown to be 
necessary for TCR‐stimulated Ca2+ influx, and differential expression patterns are known. 
Thus, only in the course of activation, T cells upregulate KCa3.1 channel expression [46]. 
Interestingly, dominant KCa3.1 expression was monitored in T helper 1 (Th1) cells, and 
their action is closely associated with autoimmunity [47, 48]. Genetic KCa3.1 depletion did 
not reduce the beneficial function of Tregs in mice. To this end, KCa3.1 antagonists have 
therapeutic potential for inhibiting autoimmune-inducing Th1, while KCa3.1 inhibition does 
not impair Treg function [45, 49].

Other channels

P2X purinoreceptor channels
The P2X family of ionotropic, adenosine triphosphate (ATP) gated cation channels 

comprises seven subunits (P2X1–7), and, interestingly, P2X7 is expressed by most cells of 
the immune system [50]. Binding of extracellular ATP causes a conformational change in 
P2X purinoreceptor channels and allows the flow of Ca2+, Na+, and K+ ions [51, 52]. While 
the inwardly rectifying current flows, the membrane depolarizes and induces additional 
Ca2+ influx via voltage gated Ca2+ channel and thus, NFAT activation and IL-2 synthesis in 
T cells [53]. T cells respond to ATP secreted by other cells, and, also, an autocrine secretion 
of ATP via pannexin-1 hemichannels occurs [54, 55]. This control mechanism might ensure 
Ca2+ signaling by fortifying weak TCR signals [56].

The contribution of P2X7 to Treg stability and function was investigated using (ant)
agonists and knockout mice. P2rx7, the gene encoding the P2X7 receptor, is a Treg signature 
gene, and it has been postulated that P2X7 triggers ATP‐mediated cell death in Tregs [57, 58]. 
Increased P2X7 stimulation with BzATP of Tregs was shown to diminish FoxP3 expression 
but increased levels of Th17 specific transcription factors [59]. By mediating Treg instability 
and conversion to Th17 cells, ATP/P2X7 signaling appeared to be proinflammatory [60]. 
Furthermore, the potential to activate the inflammasome was reported [61]. Compared to 
Tconv, Tregs produced substantially lower amounts of ATP after TCR stimulation, and the 
ectonucleotidases CD39 and CD73 converted ATP to adenosine, a suppressor of leukocyte 
activation [54, 62]. In contrast, ATP also revealed anti-inflammatory properties in some 
experiments. The suppressive activity of Tregs was enhanced under ATP exposure, and 
P2X7 receptor inhibition diminished suppressor function [63]. In T cells, P2X1 and P2X4 
were implicated in Ca2+ influx, but only a few experiments investigated their role in Treg 
function [55]. P2X1 inhibition of Tregs with NF-449 did not affect activation or suppressive 
capacity [64].

The influence of P2X channels on the developmental and immunosuppressive program 
of Tregs needs further investigation to uncover the underlying molecular mechanisms and to 
unveil the connections between different study outcomes. Although examining all isoforms 
(P2X1–7) seems worthwhile, a specific role of P2X7 in Treg is likely.

TRP channels
The superfamily of TRP channels comprises integral membrane proteins that function 

as ion channels. TRP channels are widely expressed non‐selective cation permeable channels 
acting as polymodal sensors and are involved in many physiological and pathological 
pathways. Based on their protein homology and domain structure, six TRP subfamilies were 
classified in mammals, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), 
TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) [65, 66]. The knowledge of TRP 
functions in immune cells has been continuously expanded in recent years. For example, 
TRPM4 mediated Vm depolarization prevents Ca2+ overload in response to SOCE [67]. 
Moreover, the TRP channel contribution to cytokine production was detected [68, 69]. 



Cell Physiol Biochem 2021;55(S3):145-156
DOI: 10.33594/000000375
Published online: 28 May 2021 149

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Vinnenberg et al.: Ion Channels on Regulatory T Cells

Fig. 1. Ion channels in Tregs. 
The depletion of intracellular 
Ca2+ stores in the endoplasmatic 
reticulum (ER) is mediated via 
the inositol-1,4,5-trisphosphate 
receptor (IP3R). The rising in‐
tracellular Ca2+ concentration 
activates the stromal interac‐
tion molecule 1 (STIM1) and 
STIM2, which subsequently re‐
locate to the plasma membrane 
and activate the Ca2+ release‐
activated Ca2+ channel (CRAC) 
formed by Orai homologs 1–3. 
In addition, non‐Ca2+‐selective 
transient receptor potential 
(TRP) and adenosine triphos‐
phate (ATP) activated P2X channels mediate Ca2+ entry. Sustained Ca2+ influx ensues nuclear translocation of 
transcription factors such as nuclear factor of activated T cells (NFAT) and nuclear factor-κB (NF-kB). Also, 
Ca2+ provokes opening of the K+ channel KCa3.1. KCa3.1 regulates the membrane potential (Vm), together 
with the voltage-activated Kv1.3. The volume-regulated anion channel (VRAC) mediates Cl‐ efflux, provokes 
the release of osmotically absorbed water, and thereby counteracts swelling.

Although the knowledge on TRP channel function in immune cells is growing, further 
detailed research is required.

The specified role of TRP channels in subpopulations such as Tregs is of interest. Genetic 
Trpm4-/ - in mice did not alter the number of Tregs, expression levels of activation markers 
(CD25, CD69), or cytokine production [70]. In contrast, initial evidence for an important role 
of TRPC5 in the suppressive function of Tregs in autoimmunity was provided. Treg mediated 
TRPC5 activity was identified as a mechanism potentially contributing to suppression of 
experimental autoimmune encephalomyelitis in knockout mice lacking gangliotetraose 
gangliosides [71–73]. Also, the TRPM7 channel was identified as a promising target in 
inflammatory disorders, e.g., graft-versus-host disease (GvHD). TRPM7 is a bifunctional 
protein operating as a cation channel and serine-threonine kinase [74]. Trpm7-/- mice are 
embryonically lethal, but modulating the enzymatic activity might harbor pharmacological 
potential [75]. Inactivation of its catalytic activity via K1646R mutation in mice did not affect 
differentiation of Tregs but reduced differentiation of proinflammatory Th17 [76]. To this 
end, identifying TRPM7 kinase substrates and inhibitors represents a promising strategy to 
treat inflammatory disorders.

Volume-regulated anion channel (VRAC)
To compensate intra‐ and extracellular osmotic variability, cells adapt their cell volume. 

Within this process, the volume-regulated anion channel (VRAC) was identified as a key 
player. VRAC is ubiquitously expressed in vertebrate cells, nearly inactive under resting 
conditions, and activated by hypotonic swelling. VRAC mediated Cl‐ efflux provokes the 
release of osmotically absorbed water and thereby counteracts swelling [77–79]. Using 
a genome‐wide screening of small interfering RNA, the leucine‐rich repeat‐containing 
protein 8A (LRRC8A alias SWELL1) was identified as an essential, potentially pore-forming 
component of the heterooligomeric VRAC [80, 81]. Characterization revealed increased 
expression of LRRC8A on T cells compared to other immune cells, and Lrrc8a-/- mice gave 
evidence for the special functioning of LRRC8A in Tregs. While the number of Tconv was 
reduced, Treg number and density were increased [82]. However, the molecular mechanism 
leading to this remarkable difference was not uncovered so far.
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Table 1. Ion channels of regulatory T cells and associated diseases. This table gives an overview of ion chan‐
nels involved in Treg differentiation and function and the associated diseases. CRAC channel activity is best 
characterized in mouse models, as well as in humans. In contrast, the understanding of other channels is 
limited, and the investigation of their special functions in Tregs has just started. However, the current state 
of research confirms that a diverse set of ion channels is involved in Treg lineage identity
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Conclusion

The study of ion homeostasis in Tregs and its significance for their protective function 
has received rising attention in recent years (Fig. 1). The participation of CRAC, Kv1.3, 
KCa3.1, and VRAC channels in Treg signaling have already been reported. Nevertheless, the 
detailed mechanisms and differentiation from other immune cells are not fully understood. 
Most studies have focused on CRAC mediated Ca2+ signaling, while there is growing evidence 
for a specialized contribution of voltage‐dependent Ca2+ and K+ channels and the Ca2+ 
extrusion pump PMCA [83, 84]. Next to the already elucidated channels, Tregs are named 
as further candidates in several reviews dealing with ion channels, known channelopathies, 
and associated diseases in all immune cells (Table 1) [85, 86]. However, in comparison to 
conventional T cells (~-47mV), Tregs reveal a hyperpolarized membrane potential around 
-70 mV, suggesting additional or altered ion fluxes [11]. As the resting membrane potential 
of a cell is due to the outward diffusion of potassium ions, the closer examination of 
voltage- and calcium-gated K2P channels (e.g., TRESK and TASK subfamilies) in Tregs could 
be worthwhile [87]. Accordingly, an in-silico model of human T cell electrophysiological 
behavior takes the contribution of further ion channels into account and highlights their 
impact on physiological and pathological conditions [88]. In this context, the importance 
of locally restricted ion channels and redistribution depending on the activation status was 
reported [89–91]. Hence, ion channel modulation in Tregs has a substantial therapeutic 
potential for autoimmune diseases. Identifying ion channel distribution patterns and potent 
(ant)agonists is of outstanding relevance for further studies.

Last but not least, little attention has been paid to H+ mediated regulation of pH and 
the roles of Mg2+ and Zn2+ as cofactors and second messengers. This indicates that research 
on the impact of diverse ion channels on Treg function is just at a starting point, and major 
challenges remain. Also, understanding specific ion channel expression frequencies and 
patterns in Tregs represents a powerful approach to gain new insights on immunological 
tolerance and pathophysiological participation in immune diseases.
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