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Abstract
Cells contain several proteins that routinely fulfill multiple requirements for normal physiological 
survival. Proteostasis dysfunction is linked with different complex human disorders, like cancer, 
neuron degeneration, and imperfect aging. The ubiquitin proteasome system (UPS) forms the 
primary proteostasis mechanism taking part in cytoprotection. Cancer cells are well known to 
possess enhanced cytoprotective properties, and different UPS elements are implicated to be 
dysregulated at several stages of tumor progression. Furthermore, many studies have found 
tumor cells to exhibit higher levels of various UPS components, possibly contributing to their 
robust endurance. In this article, we have presented different cellular protein quality control 
strategies, essential for maintaining healthy proteome. Here, we have also discussed key 
contributions and functions of UPS involved in molecular pathomechanisms for establishing 
cancer conditions. Along with this, the emerging different therapeutic strategies against 
defective proteome linked with improper cellular proliferation and cancer progression are 
also reviewed. UPS performs critical regulatory functions in modulating the cellular apoptotic 
pathways. The proteasomal system involvement as probable therapeutic targets influencing 
cancer cell apoptosis is also discussed. Our article summarizes the recent developments in 
proteasome-associated pathways regulating tumor cell proteome and survival. Additionally, 
how the engagement and cross functions of these physiological processes can induce 
apoptosis and may develop regulation over tumor progression. A better understanding of 
multifaceted protein quality control pathways may inform therapeutic interventions based on 
cellular proteostasis response determined against complex diseases.
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Introduction

Cancer, being a very complex form of disorder, displays true nature of outcome emerging 
from working over the balance in cellular system. The history of cancer study has been a 
long journey from the first known recorded case in papyrus of Edwin Smith in 3000 B.C. 
to current understanding of cancer [1]. Several hypothesis and theories laid by different 
scientists like Hippocrates, Paracelsus, and Boerhaave have narrowed down the cause of 
disease from black bile to viruses, improving our earliest understanding [1]. Today, we 
have been able to outline the cancer cell characteristics and lay down its major hallmarks 
[2, 3]. David Hanseman indicated that the cancer cells have altered chromatin content and 
could undergo anaplasia to have rapid division characteristics [4]. The damaged chromatin 
in normal cells could result in extensive cellular damage; however, cancer cells are seen to 
survive despite such extensive DNA damage. How do they manage the extended damages 
and still persist the high proliferation rate? Often the damage in DNA manifests truncated, 
mutant or misfolded proteins, which are compromised in performing their physiological 
functions, and may lead to the phenomenon of protein aggregation. To avoid or deal with 
such conditions, cancer cells are found to have upregulated elements of system governing the 
overall quality of protein (Fig. 1). In this review, we have tried to lay down the mechanistic 
pathways of the cancer cell protein quality control, and propose how their diverse functions 
aid in cancer cells survivorship.

The synthesis of protein and its subsequent folding into native conformation is an outcome 
of vigilant action of heat shock proteins (HSPs)/chaperones. Chaperones and chaperonins 
principally identify and help modulate the interaction between the hydrophobic residues in 
polypeptide chains [5]. Largely, the function of chaperones complements the physiological 
functions of several key elements involved in pathways that help in cancer progression. For 
instance, HSP70, one of the most versatile family of chaperones, is greatly enhanced in cancer 
cells. It is known to perform critical functions in mediating the hypoxia response, metastasis, 
and extracellular immunogenic role [6]. HSP70 and other co-chaperones also help HSP90 
identify the substrates and mediate their function, avoiding their aggregation. HSP90 is also 
seen to be highly upregulated in cancer cells, helping in cancer progression, and avoiding 
activating apoptosis [7]. Besides, HSPs60 and 10 are reported to mediate the folding of 
mitochondrial proteins; HSP10 is also reported to stall the activation of DNA damage-
induced apoptosis and hence, aid in tumor progression [8-10]. Along with the classical HSPs, 
HSP27 is also found to be in high amounts in cancer cells. These form complexes by self-
associating and try to modulate the hydrophobic interactions. HSP27 is reported to enhance 
tumor progression, metastasis, and help in mediating drug resistance [11, 12].

Endoplasmic reticulum (ER) performs vital function in maintaining the quality of 
protein, and in the case of protein misfolding, the quality control at ER mediates the 
misfolded protein response. ER houses two major responses to misfolding of protein viz. the 
unfolded protein response (UPR) and ER-associated degradation (ERAD) [13]. The proteins 
with defect in folding are first recognized by glucose regulated protein 78 (GRP78; Bip). 
It is known to control activation of the major ER membrane activators of UPR i.e., PERK, 
ATF6, and IRE1. Due to an increase in number of misfolded proteins, Bip is released from 
these activators of UPR, initiating this pathway. In case of cancer cells, both the Bip and the 
activators of UPR are found to be upregulated [14]. Activation of PERK leads to initiation 
of autophagy, whereas activation of ATF6 upregulates the chaperone expression to aid the 
refolding of proteins [15, 16]. Besides ER, mitochondria are also known to sense the build-
up of misfolded proteins. Therefore, mitochondria mediate the mitochondrial UPR (mtUPR) 
and increase the expression of chaperones by activating ATF5 [17]. In case the attempts to 
refold the protein molecules fail, IRE1 is activated at ER, which helps in activating the ERAD 
pathway of protein degradation [18]. These key molecules are reported to be enhanced in 
cancer cells, which, apart from regulating the protein quality, help in cell survival, metastasis, 
tumor progression, and resistance to drugs.
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Fig. 1. Cancer cells have extensive proliferation rate with de-regulated cell cycle and damaged DNA. Such 
situation often leads to synthesis of mutant misfolded proteins and extensive deprivation of basic nutrients 
in cell. In order to compensate for such lethal anomalies, cancer cells are often found to have high expression 
of members of general homeostatic systems like ones involved in protein quality control. The figure depicts 
different protein quality control strategies undertaken by cancer cell to ensure optimum protein quality 
and have sustained survival. All the described protein quality control pathways help to gain crucial cancer 
characteristics which are mentioned at the center. The molecules in Red are known to be upregulated in 
respective system/pathways and can be potentially exploited for developing therapeutic strategies against 
cancer cell protein quality control.

Figure-1 
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The UPR-mediated activation of ERAD pathway is another key mechanism in managing 
the misfolded protein accumulation at ER. After the multiple attempts of refolding by 
chaperones and other folding proteins at ER, if the misfolded protein fails to fold, it is targeted 
for degradation by ERAD. The misfolded protein is transported from the ER into the cytosol at 
its cytosolic phase, where they are directed to proteasomal-linked degradation by E3 ligases. 
In cancer cells, HRD1, which is one of the main ER-associated E3 ligases in ERAD, is found 
to be highly upregulated. HRD1, with the aid of Sel1L (helps in translocation of protein to 
cytosol from lumen of ER), mediates polyubiquitination of misfolded protein clients [19, 20]. 
Glycoprotein 78 (gp78; AMFR, Autocrine motility factor receptor) is also known to be 
greatly expressed in cancer pathologies [21]. Similar to HRD1-Sel1L, gp78 also degrades 
misfolded protein and helps in cancer progression and metastasis [22]. The demolition of 
misfolded proteins and regulatory functions of ERAD is finally completed with the function 
of proteasome, which is enhanced in multiple cancer types [23].

The UPS mainly manages the overall health of the cytosolic proteins and governs 
different cytosolic mechanisms. The basic mechanism of the system includes the addition of 
an activated ubiquitin chain onto a client protein. This is performed by coordinated activity 
of key enzymes viz. E1, E2, and E3 [24]. The E1 ubiquitin-activating enzyme helps to activate 
the ubiquitin by mediating its C-terminus acyl adenylation with ATP [25]. It is then shifted 
to E2 conjugating enzyme, which can then further interact with the E3 ligase [26]. E3 ligases 
are the most versatile member of the squad and have the ability to specifically identify the 
substrate as well as transfer the ubiquitin upon substrate [27]. The identification of substrate 
by E3 ligases is often facilitated by chaperones which, in a way, target the misfolded client 
protein for degradation by transferring them to E3s [28].

In cancer cells, several E3 enzymes are reported to be highly upregulated, and they help 
in throwing off the cytological balance to establish immortality and cancerous nature. For 
instance, the molecular aspects of cancer begin with the supression of p53 (the guardian of 
the genome), which is mediated by MDM2, Cop1, and Cul7-based E3 ligases. MDM2, Cop1, and 
Cul7 are overexpressed in cells of tumor and help in their progression and drug resistivity [29-
32]. Similarly, tumor cell metastasis is inhibited by NDRG1, a growth promoting factor, which 
suppresses metastasis, and E6AP E3 ligase is reported to promote metastasis by degrading 
NDRG1 [33]. Nedd4 and similar proteins, normally involved in vesicle trafficking and protein 
translocation, help the cancer progression by modulating several signaling pathways driven 
by growth factors [34]. The ERK-mediated growth promotion is also modulated by the 
action of PIAS1 E3 ligase, which helps to add SUMO onto several proteins and in tumor 
progression [35, 36].

Cancer cells are highly proliferating cells, which demand large energy inputs, and 
mitochondrion is the predominant source of energy in cell. Therefore, maintaining 
mitochondrial health is of paramount significance in cancer cells, and several PQC members, 
including E3 ligases, help in achieving it via mitochondria-associated degradation (MAD) 
[37]. Proteins that are misfolded are often trafficked to the outer mitochondria membrane 
[38], where they are dealt with by Cdc48 (p97) [39]. Cdc48, along with other co-factors 
(HSP70 and HSC70), is known to be greatly enhanced in cancer owing to overwhelming 
proteotoxic stress and helps ubiquitinate and degrade the misfolded clients at mitochondria 
and ER membrane [40, 41]. Besides, Cdc48 can also eliminate the misfolded proteins at 
mitochondria by initiating the autophagic degradation of mitochondria with aid of Parkin 
[42, 43]. Autophagy, in general, is upregulated in cancer cells owing to deprived nutrient and 
hypoxia conditions. The key elements of autophagy initiation, which includes ULK1, help in 
phagophore formation, are greatly increased in cancerous cells [44]. Besides, ATG proteins 
also help in the phagophore formation and elongation and mediate the loading of LC3 
(substrate receptor) [45]. LC3 is present in greater levels, helping in capture and selection of 
substrate, along with elongation and maturation of autophagosome in cancer [46, 47].

LC3 interacts with cargo receptor of autophagy i.e., p62, which is also known to be 
aberrantly increased in cancer conditions. The misfolded proteins are ubiquitinated by 
different E3 ligases, and these ubiquitinated misfolded proteins can interact with p62, 
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which on the counterpart interacts with LC3 on membrane of autophagosome [48]. Finally, 
the substrate capture autophagosome then goes ahead and combines with the lysosome 
forming autophago-lysosome where the substrate demolition occurs by the lytic enzymes. 
The intersection and blending of the autophagosome with the lysosome are largely mediated 
by the critical protein Beclin1, which again is highly upregulated in cancers [49]. Autophagy 
can have double role in cancer cell as it can promote oncogenesis as well in many instances, 
it can inhibit cancer progression [50]. If we focus on its oncogenic nature, it can help in 
cell survival, inhibition of apoptosis, hypoxia response, and developing resistance to drugs 
in cancerous cells [45]. Overall, these homeostatic mechanisms, collectively understood as 
the protein quality control system are found to be greatly enhanced in cancer cells. These 
mechanisms help to take care of the widely unstable proteome and mediate the cell cycle 
deregulation, achieve immortalization, mediate metastasis and angiogenesis, and employ 
drug resistance. In the upcoming sections, we will thoroughly discuss these mechanisms in 
cancer cells.

How Does Ubiquitin Proteasome System Regulate the Tumor Cell Progression?

The UPS degrades most of the misfolded proteins present in the cells [51]. In a cell, 
UPS contributes to reducing the impaired proteins and re-modeling of the mitochondrial 
proteome during stress [52]. UPS also regulates the important proteins essential to cell-
cycle progress like p53, p27 and the mitochondrial protein quality control [53, 54]. One 
out of three of the total proteins of the cell is folded in ER and moved to different cellular 
compartments. The maintenance of homeostasis in ER is done by two ER quality regulating 
machinery, ERAD and UPR [55] (Fig. 2).

Enhanced Cytoprotective Functions of Endoplasmic Reticulum Based Quality Control 
Systems and their Possible Implications in Cancer Cells
The ER is central to the translation as well as further modifications of the secretory 

proteins. Changes in the ER environment either by physiological or pathological stimuli 
can lead to protein aggregation, calcium depletion, and oxidative stress [56, 57]. ER quality 
control helps in maintaining the homeostasis aiding in survival and proliferation of cancerous 
cells [58]. Stress at ER triggers the UPR, which help the cancer cells to survive under stress 
conditions [55]. There are three pathways that control the protein quality control (PQC) of ER 
and maintain ER homeostasis - UPR, ERAD, and autophagy. ERAD directs improperly folded 
proteins present inside ER to get degraded by the proteasome. ERAD plays part in identifying 
misfolded proteins, their transportation across ER-cytosol, and finally, their ubiquitination 
directing them to proteasome [59]. Improperly folded proteins in ER are identified by BiP 
[60], OS-9 [61], XTP3B, and EDEM [62]. After recognition of the aberrantly folded protein, it 
is translocated into the cytoplasm and ubiquitinylated via HRD1 [63], in complex with Sel1L 
[64, 65]. UPR is also activated in cancer, which leads to the initiation of the PERK, IRE1α, and 
ATF6, which are ER stress sensors [66]. These sensors get activated when BiP detaches from 
their luminal part. Each ER sensor ultimately leads to the rise in the level of ER chaperones 
as well as increases the ERAD. The regulation of ER chaperones and the sensors of UPR have 
been reported as potential cancer therapies [67]. Recently, PERK-activated protein ATF4 has 
been found to increase by several folds in hypoxia environment in breast cancer tissue [68].

Importance of Ubiquitin-Proteasome System-Mediated Regulation of p53 and p27 in 
Establishing Tumorigenesis
p53 and p27 are the important proteins, which regulate the cell cycle. p53 is the 

essential tumor suppressor, with many cancer patients having defects in the p53 signaling 
[69]. p53 is a nuclear TF, which influences the transcription of various genes engaged in 
promoting cell death and arrest of cell cycle [70]. The proteasomal degradation maintains 
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lower levels of p53 in regular physiological environment. But when DNA is damaged in cells 
irreversibly, p53 shows its pro-apoptotic function, removing damaged cells and thus prevent 
their further division. The p27 protein is a CDK inhibitor regulating the cell-division cycle 
advancement to the S phase from G1 [71]. p53 activity is vital for suppressing tumor, and 
its stability is affected by HDM2 and HDMX [72]. It has been noted that increase in HDM2 
leads to a decrease in p53. The E3 ligase HDM2 alone can mono-ubiquitinate p53, which is 
not degraded by the proteasome instead is exported out of the nucleus, but when HDM2 
is with p300, it polyubiquitinates the p53, which help in its degradation, thus supporting 
tumor growth [53]. p27 protein is the main controller of the cell cycle by controlling the CDK 
function, and reduction in its level via proteasome is required for the cell to enter the state 
of proliferation. The proteasomal degradation of p27 is mediated by NEDD8ylated SCFSkp2 
complex (E3) consisting of Cullin1, SKP1, RBX1, and SKP2 [54, 73, 74]. It has been noted that 
many cancers have high levels of SKP2 and CDC34 (E2 enzyme) and reduced p27 [75, 76]. 
The reduced level of p27 is common among multiple cancers like ovarian and breast cancer 
[77].

Increased Mitochondrial-Associated Degradation Aids in Tumor Cell Proteostasis
The functioning of mitochondria is supported by UPS for the degradation of the 

misfolded proteins that are accumulated during stress conditions. TOM complex is involved 
in maintenance of protein quality along with UBXD8 (UBX2 in yeast) at outer mitochondrial 
membrane (OMM) [78]. UBX2 has a UBX domain, which can bind to the CDC48, and this 
protein also has affinity for ubiquitinated proteins [79, 80]. UBXD8 with p97 is engaged 
in degrading the mitochondrial proteins by targeting them to the proteasome, and they 
are upregulated in proliferating cancerous cells [81]. Many cancers show high expression 
of TOMM20 [82]. Another mitochondrial PQC mechanism, the mitoCPR degrades the 
incorrectly folded proteins on cytosolic face of OMM during protein import stress [83, 84]. 
CIS1 is a vital protein of this system, expression of which is very important for overcoming the 
compromised protein import. CIS1 interacts with TOM70, recruiting ATAD1 (AAA ATPase; 
MSP1 in yeast) to clear the proteins from the TOM by their degradation via proteasome 
[84, 85], while proteins that are misfolded in the matrix of the mitochondria are degraded 
by LON protease [86] and CLPXP protease [87-89]. LON protease has the vital function in 
tumor growth [86] and ClpXP protease levels has also shown to be elevated in tumors and 
hematologic malignancies [88, 89].

Proteasomal System Based Modulation of NF-κB in Cancer Biology
The TF NF-κB is essential in cell survival. It has subunits: Rel, p105/p50, p100/p52, p65, 

and RelB [90]. N-terminal RHD and C-terminal TAD occurs in p65, Rel, and RelB, while p52 
and p50 have only RHD [91]. RHD is required in dimerization and DNA binding, while TAD 
is required for transcriptional activation [92]. NF-κB as p50-p65 dimer binds DNA. The NF-
κB pathway is engaged in numerous kinds of tumors [93]. During cell homeostasis, NF-κB 
complex is stuck in the cytosol via the attachment to IκB, which inhibits NF-κB by preventing 
transfer to nucleus. On receiving signal on cell surface receptors like IL-1R and TNFR, by 
IL-1 or TNF, TRAF6 (E3) along with UBC13-UEV1 (E2) helps in attaching polyubiquitin 
chain to TAK1 [94]. The polyubiquitin chain also recruits IκB kinase, which is later activated 
by TAK1 kinase function [95]. The activated IκB kinase then phosphorylates IκB making it 
prone to ubiquitination by SCFβ-TrCP complex, and directed to proteasome for demolition [96]. 
The degradation of IκB frees NF-κB from its association in the cytosol, to move to nucleus, 
initiating its signaling pathway [97]. NF-κB affects the tumor progression and development 
by activation of excessive innate immunity and promotes abnormal cell growth [98]. NF-κB 
pathway is altered in hematopoietic and tumor malignancy, promoting tumor cell division 
and survival [99, 100]. Contrary to this, NF-κB is understood to reduce the progress of 
tumor [101].
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Fig. 2. A) ERAD performs critical functions in cancer via degrading the aberrantly folded proteins present 
inside the ER via HRD1 and Sel1L. UPR is also upregulated in the cancer cells which further regulates the 
chaperones and ERAD. B) p53 and p27 are both tumor suppressor which are in cancer cells are downregu-
lated due to degradation by UPS. C) Mitochondria is the powerhouse of the cell, in oncogenic cells, the PQC 
system of the mitochondria is overseen by UPS. Mitochondrial outer membrane proteins are TOM, UBXD8, 
TOM70, and ATAD1 help in delivering the proteins outside the mitochondria for degradation. The misfolded 
proteins in the mitochondria are reduced by CLPXP and LON protease. D) Downregulation of IκB via UPS 
activates NF-κB pathway. The UPS regulates several process involved in tumor progression for instance, 
during pathogenesis of cancer stages such as hyperplasia that involves high proliferation rate and dysplasia 
involving development of cancer-like cells, the transcription factors p53 and c-Myc are considered to play 
significant role. The proteasomal inhibition of p53 function is achieved with the help of Mdm2, whereas 
FBW7 and Skp2 are involved in regulating proteasome-mediated degradation of c-Myc. Similarly, HIF1α 
promotes angiogenesis during cancer, and is directed to degradation by VHL and FBW7.

Figure-2
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Targeting the Ubiquitin Proteasomal Proteolytic Machinery as a Key Remedial 
Approach for Cancer

The UPS consists of five major components, which are E1 enzymes, E2 enzymes, E3 
ligases, 26S proteasome, and deubiquitinases (DUBs). The first among these is the E1 
enzymes, which utilize the ATP molecule for activation of ubiquitin, which binds to its Cys by 
thioesterification. Then, ubiquitin gets shifted to Cys residue of E2 enzymes, which interacts 
with E3 ligase and can transfer ubiquitin either directly to substrate or first to E3 ligase and 
from there to substrate. An E3 enzyme then catalyses the reaction forming the isopeptide 
linkage among substrate and the ubiquitin molecules. The E3 ligases are classified as RBR, 
HECT, and RING, according to domain types [102]. The polyubiquitin chain can form between 
any of its seven lysine or the first methionine residue [103]. For degradation, the protein is 
brought to the proteasome consisting of the 20S core particle (β rings having the catalytic 
protease activity) and 19S regulatory particle. These components have been reviewed 
thoroughly from mechanistic point of view elsewhere [104] (Fig. 3).

Fig. 3. The UPS enzymes E1, E2, and E3 act in this fashion to ubiquitinate the substrate protein, targeting 
it for degradation or it can be acted upon by deubiquitinases which are involved in recycling of ubiquitin 
molecules. The drugs target E1 enzymes, UAE and NAE and E2 enzymes and show effects against tumor. 
Compounds targeting the proteasome belong to different chemical classes and its inhibition lead to apop-
tosis via multiple pathways. E3 enzymes and deubiquitinases also serve as drug targets and their inhibition 
can also lead to remedial effects.

Figure-3 
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Provisions of E1 Ubiquitin Activating Enzymes Targeting Inhibitors
The E1 enzymes serve as potential target for cancer therapy. Inhibitors like PYR-41, a 

pyrazone, inhibits UAE irreversibly and blocks initiation of ubiquitination and is known to 
inhibit clearance of p53 [105] and TAK-243 (MLN7243), an adenosyl sulfamate, also induces 
ER stress in different cancer cell lines [106]. ABP A3, an inhibitor of both UAE and NAE, also 
can cause p53 accumulation and apoptosis induction in cancer cells [107]. NAE is an E1 
enzyme for the activation of NEDD8, and MLN4924 can inhibit the thioester bond formation 
between it and NEDD8, resulting in accumulation of IκB, p27, and p21 [108]. TAS4464, a 
recently developed inhibitor of NAE, is more selective for NAE compared to UAE and SAE. It 
also shows accumulation of substrates of cullin-based E3 complexes but is more potent than 
MLN4924 and can be a candidate for treating MM [109].

Opportunities and Challenges of E2 Ubiquitin Conjugating Enzymes Targeting Inhibitors
The E2 enzymes, present downstream of the E1 in the UPS pathway, have also proven 

to be effective therapeutic targets for cancer. CC0651 has been shown to inhibit Cdc34 E2 
enzyme in an allosteric manner, making it unable to discharge the ubiquitin molecule to 
acceptor lysine residue [110]. Another E2 enzyme is Ubc13-Uev1A, which interacts with its 
corresponding E3 ligase, TRAF6, which then ubiquitinate TAK1, activating it. This ubiquitin 
chain on TAK1 brings IKK near it for phosphorylation, leading to the activation of IKK. 
Activated IKK can phosphorylate IκB, which can then be ubiquitinylated by SCF complex, 
and cleared, activating NF-κB. The compound NSC697923 can covalently inhibit catalytic 
cysteine Ubc13-Uev1A and, in turn, NF-κB signaling [111]. Recently, few natural compounds 
are also reported inhibiting Ubc13-Uev1A [112, 113].

E3 Ubiquitin Ligase Enzymes Targeting Inhibitors: Can They Offer More Selectivity?
Next in line are E3 ligases, which are known to have more diversity of the three enzymes. 

Consequently, they can also offer more selectivity as different E3 ligases have different 
substrates, and thus their inhibitors may have lesser off-target effects. Mdm2 ubiquitinates 
p53, an important tumor suppressor with a small half-life in a normal cell [114]. Inhibition of 
Mdm2 in cancer cells can increase the p53 accumulation. Nutlins (cis-imidazoline analogs) 
and their derivatives like RG7112 are known inhibitors of Mdm2, and are reported to 
cause apoptosis dependent on p53 in different cancer types, such as leukemia [115-117]. 
Recently, AMG 232 has been found to be the most potent inhibitory compound of Mdm2 
and has finished trials for phase I for MM [118, 119]. The spiro-oxindoles MI-219 and MI-63 
have also shown to be inhibitors of Mdm2 [120, 121]. MEL23 and MEL24 are tetrahydro-
β-carbolines showing inhibitory activity against Hdm2-HdmX dimer (when in dimer form, 
HdmX can increase the ligase activity of Hdm2) [122], while NSC207895 inhibits MdmX 
selectively [123]. APC E3 ligase complex is another therapeutic target, and currently, TAME 
and apcin are known to inhibit its activity by inhibiting its Cdc20-dependent activation. It 
then becomes unable to act on its substrates, securin and cyclin B, thus blocking the mitotic 
exit, but recently the effect of apcin on mitosis is observed to be opposite depending upon 
context [124-126]. Next is β-TrCP E3 ligase component, which aids in targeting Pdcd4 and 
IκB (both are anti-oncogenic proteins) for ubiquitination-mediated degradation. Erioflorin 
has been reported to inhibit β-TrCP, inhibiting NF-κB signaling as well as decreasing cancer 
proliferation via stabilizing Pdcd4 [127].

Novel Proteasome Inhibitors: A Positive Hope Against Abnormal Proliferation
After the ubiquitination, the next step in UPS involves substrate getting degraded by 

proteasome, which can be targeted for treating cancer. Bortezomib is the first inhibitor of 
proteasome or PI, allowed by FDA for treating multiple myeloma. It is known to cause CT-like 
activity inhibition of β5 subunit through its boron atom. The inhibition of proteasome by it 
causes stabilization of p53, p27, and NF-κB inactivation, all contributing to its anti-tumor 
effect [128]. Another FDA-approved PI, carfilzomib binds to 20S proteasome in an irreversible 
manner. The third and last FDA-approved PI is ixazomib as a second-line treatment for 
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multiple myeloma [129]. PIs can be peptide aldehydes like MG-132 and IPSI-001, which 
binds covalently to Thr at N-terminal of β-subunit. MG-132 is unstable in vivo, hence has 
not been used much for drug development and IPSI-001 acts on immunoproteasome [130].

The second category is peptide boronates and includes bortezomib, MLN9708 (ixazomib 
citrate; oral), ixazomib, delanzomib (oral), and recently developed ZY-2 and ZY-13 are dual 
inhibitors of proteasome and HDACs, so as to overcome the resistance of multiple myeloma for 
other PI inhibitors [131]. The peptidyl vinyl sulfones are proteasome inhibitors and affect it 
through covalent interactions [132]. Similar to carfilzomib, oprozomib is also an epoxyketone 
PI with oral bioavailability. Marizomib, a β-lactone backbone containing compound also 
inhibits proteasome and makes acyl-ester bond with oxygen of Thr1, thus aiding in making 
an irreversible bound form [133]. Recently, certain nanoparticles (e.g., auranofin targeting 
DUBs associated with 19S), repurposed drugs as well as natural compounds are being 
developed as proteasome inhibitors like celastrol (natural) and piperidones and disulfiram 
(chemical) [134-137]. The proteasomal inhibition can cause apoptosis via multiple paths 
and other than those mentioned earlier, this can cause ER stress as well as increase proteins 
like Bax and Bak (pro-apoptotic).

Focus and Directions Associated with Deubiquitinases Targeting Inhibitors
Lastly, deubiquitinases are also emerging as therapeutic targets. The deubiquitinase 

USP7 acts on its target Mdm2 and inhibition of USP7 by P5091, P22077, and P50429 leads 
to increased Mdm2 degradation, thus causing p53 stabilization and cell death, specifically 
in bortezomib-resistant multiple myeloma cells [138, 139]. NSC632839 is a broad DUB 
inhibitor of USP2 and USP7, and is associated with activating caspases and apoptosis [140, 
141]. b-AP15 inhibits UCHL5 and USP14 selectively and has been known to cause proteotoxic 
stress and apoptosis in MM [142, 143]. VLX1570, a b-AP15 analogue, demonstrated higher 
effectiveness and solubility, showing apoptosis induction in MM cells [144].

The Promising Function of Quality Control Elements in the Apoptosis of Cancer Cells

The programmed cell death via apoptosis primarily regulates homeostasis by eliminating 
the damage incurred cells. The activation of apoptosis entails majorly the intrinsic (mediated 
by mitochondria) and the extrinsic (Death receptor) pathway, leading to caspase cascade 
activation (Fig. 4) [145]. The mitochondrial exit of cytochrome c (cyt c) induces caspase 
cascade and apoptosis, and is considered as a non-reversible event. However, cells with 
mitochondria outer membrane permeabilization (MOMP) can continue to grow by specific 
mechanisms like caspase inhibition observed in neuronal cells [146]. In some cancer cells 
with stressed mitochondria, the cytochrome c levels are lowered via the proteasome system 
for survival [147]. Cyt c release depends on proteins involved in activating or inhibiting 
apoptosis. A pro-apoptotic protein helps in apoptosis progression by modulating the cyt c 
release to cytosol [148, 149]. Caspase 9 activation can be mediated by cytochrome c by 
making interaction with Apaf-1, and forming apoptosome [150]. Instigated caspase 9 further 
initiates effector caspases activation, i.e., caspase 3/7 [151].

Death receptors present on the membrane initiate extrinsic apoptotic pathway, which 
includes TNFR (TNF), Fas (FasL), and DR4 and DR5 (TRAIL) [152-157]. The cytoplasmic 
part of these receptors has a death domain, which upon binding with ligand, results in 
trimerization of receptor inside membrane [158, 159]. Adaptor proteins like FADD bind 
with the death receptors along with pro-caspases 8/10 initiating the synthesis of DISC [159, 
160]. Pro-caspases 10 and 8 activation takes place in DISC; these caspases further activate 
pro-caspases 6, 3, and 7 [161]. The activated effector caspases can perform enzymatic 
cleavage on the cellular protein and ultimately results in the death of cells by apoptosis 
[145]. The regulation of extrinsic pathway is achieved at various stages; for instance, cellular 
FLICE-inhibitory protein (c-FLIP) inhibits the signal transduction from activated death 
receptor [162]. The caspases 8 and 10 activation can further initiate intrinsic pathway by 
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cleavage mediated activation of BID, which takes part in mitochondrial exit of cyt c [163]. 
Immunological identification of cancer cells also initiates Fas ligand (FasL) mediated 
apoptosis; however, cancer cells can avoid such immune-activated cell death by producing 
decoy receptors, which can bind and block FasL mediated apoptosis [164].

Proteins involved in apoptosis are regulated by various elements of PQC, including heat 
shock proteins (HSPs), E3 ligases, deubiquitinating enzymes (DUBs), and the proteasome 
(Fig. 4).

How Are Heat Shock Proteins Linked with Apoptosis in Cancer Cells?
HSPs primarily play part in maintaining homeostasis inside cell by regulating the 

protein folding and their functional interactions [165]. HSPs in cancer conditions are known 
to be highly enhanced and are involved in inhibiting the activation of apoptosis. HSP27 
can inhibit apoptosis by interacting with either cyt c or caspase 3, inhibiting the intrinsic 
pathway [166, 167]. HSP70 can also oppose apoptotic pathways via interfering with Apaf-1 
and AIF, and subsequent caspase 9 activation and along with HSP40, can inhibit the transfer 
of Bax to mitochondrial membrane [168, 169]. HSP90 represses pro-caspase 9 activation 
via inhibition of Apaf-1 oligomerization (mediated by cytochrome c) under non-stress 
conditions [170]. In tumor cells, HSP60 interacts with cyclophilin D (CypD) and modulates 
the transition of mitochondrial permeability, inhibiting apoptosis [171]. HSP60 interaction 
with p53 (stabilization) is reduced and is involved in stabilizing the mitochondrial survivin, 
avoiding the caspase-mediated activation of tumor cell death [172].

Ubiquitination Mediated Regulation of Apoptosis in Cancer
Intrinsic as well as an extrinsic pathway of apoptotic proteins can be regulated by 

E3 ligase activity; various E3 ligases are reported to modulate the apoptosis pathways. 
For instance, MCL1 acts as an anti-apoptotic protein, and TRIM17 E3 ligase controls the 
apoptosis by maintaining the levels of MCL1 in coordination with GSK3 and DUBs [173-175]. 
The chemo-resistivity of cancerous cells is achieved by avoiding the initiation of intrinsic 
pathway, mediated by the oligomerisation of Bax protein with the help of modulator of 
apoptosis protein 1 (MOAP1). MOAP1 is ubiquitinated and degraded through APC/C-Cdh1 
E3; however, TRIM39 can influence this degradation of MOAP1 via directly inhibiting its 
ubiquitination by APC/C-Cdh1 and thus avoiding apoptosis [176]. UBR5 is an E3 ligase for 
MOAP1 degradation, and its knockdown results in an increase in MOAP1 with improved 
Bax activation in the cisplatin-resistant cells [177]. NEDD4 like E3 ligase WWP1 expression 
level in tumors is comparatively higher than the normal tissues. WWP1 knockdown leads to 
apoptosis with increased caspase activation; WWP1 inhibition seems to activate caspases 
[178]. AREL1 E3 ligase can bind to SMAC, HtrA2, and ARTS (antagonists of caspase inhibitor 
IAPs), to mediate their ubiquitin-dependent degradation [179]. Similarly, TRIM32 can be 
a good target for cancer therapeutics as evidence show that TRIM32 can bind with XIAP 
and ubiquitinylate it for its degradation [180]. E3 ligases were also reported in regulation of 
extrinsic apoptosis pathway; cFLIP inhibits the pro-caspase 8 activation, and ITCH E3 ligase 
is known to reduce cFLIP levels [181]. Also, TRAF2 and cullin 3-based E3 ligases are known 
to polyubiquitinate caspase 8, and mediate its subsequent proteasomal degradation, thus 
can act as key modulators of apoptosis in cancer therapy [182, 183].

The DUBs remove ubiquitin molecule from the substrate protein, and apoptosis 
pathways can be regulated through the action of DUBs. Bim acts as an apoptosis-promoting 
protein, and its expression is correlated with apoptosis in tumor and non-malignant cell; 
ERK can mediate the phosphorylation, required for subsequent proteasomal degradation 
of Bim [184]. USP27X can act as DUB and stabilize the Bim expression, thereby inducing 
apoptosis in tumor cells [184]. Cell adhesion mediated drug resistance (CAM-DR) is exhibited 
in drug resistant MM cells; it is reported that USP14 takes part in CAM-DR by inducing Bcl-xl, 
resulting in inhibition of apoptosis [185].
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Figure-4

Fig. 4. Apoptosis has an essential part in maintaining homeostatic environment in the cell. The essential 
steps implicated in intrinsic and extrinsic pathways of apoptosis is shown at center. In cancer, tumor cells 
avoid the apoptosis pathway by different mechanisms by modulating the apoptotic proteins. Elements of 
PQC system like HSPs, E3 ligases, DUBs, and proteasome are observed in regulating the functions of pro-
tein involved in apoptotic mechanisms. The involvement of these elements at different steps of apoptotic 
pathways is shown in the figure. These regulators of apoptotic pathways (PQC elements) can be effectively 
targeted to kill a cancer cell.
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Also, USP9X and USP13, stabilize MCL1 by avoiding its proteasomal degradation and 
result in cell survival, demonstrating their significance in cancer therapeutics [186, 187]. 
Similarly, USP9X and USP11 stabilize XIAP that can repress apoptosis and mediate chemo-
resistance during tumor progression [188, 189]. USP15 is found to be important for caspase 
3 functions and also helps in its stabilization during apoptosis induced by paclitaxel [190]. 
Pro-caspase 8 activation in the extrinsic pathway requires aggregation that is achieved 
through cullin 3 based E3 ligase. However, DUB A20 reverses this modification, which 
represses the caspase 8 aggregation and subsequent apoptosis inhibition [183]. Besides, 
USP8 is reported to stabilize the FLIP and inhibit the apoptosis in cancer cells, as FLIP is 
involved in repressing caspase 8 activity [191]. Thus, E3 ligases and DUBs have intricate part 
in modulating cancer cell survival by inhibiting the activation of apoptosis and, therefore, 
can act as potential target in developing therapeutic interventions in cancer.

Proteasome and its Interaction with Apoptotic Proteins
Upon polyubiquitination, the substrate molecule is subjected to degradation with 

the help of the proteasome complex [192]. p53 is involved in pro-apoptotic function as it 
suppresses the synthesis of Bcl-2 [193] and β-catenin [194], and induce formation of pro-
death molecules like Apaf-1 [195], Bax [196], and Noxa [197]. Mdm2 controls diverse 
functions of p53 by regulating its turnover [198, 199]. XIAP, cIAP1, and cIAP2 can modulate 
various initiator and effectors caspases by inhibiting their activities, leading to apoptosis 
inhibition [200, 201]. The IAPs are known to self-ubiquitinate and promote their degradation 
through the proteasome assembly [202]. IκBα acts as an inhibitor of tumor survival factor 
NF-κB, involved in regulating gene expression related to tumor survival. Inhibition of NF-κB 
can be targeted in cancer treatment. Inhibition of proteasomal activity can stop degradation 
of IκBα and subsequent accumulation inside cytosol, which can repress the transfer of NF-κB 
inside nucleus [203].

Key Questions and Conclusions

The PQC in cancer unmasks the overall multifunctional and interconnected nature of the 
homeostatic mechanisms in cells. The general turnover of p53 is regulated by PQC elements 
in cell by ubiquitinating it for either proteasomal or lysosomal degradation. However, many 
E3 enzymes have been shown to catalyze the ubiquitination of p53 promoted by different 
signal inputs and stress conditions. HDM2 can mono-ubiquitinate p53 and HDM-p300 can 
polyubiquitinate the p53. It is, therefore, still not completely understood how p53 is exactly 
modulated in different cancers and whether a master switch exists upstream of the pathway 
that promotes the commitment of its degradation. Finally, the diversity of molecules and the 
pathways activating the autophagy and UPS are key challenges to ascertain critical targets 
for their ubiquitous modulation in cancer treatments. Cancer cells have shown remarkable 
characteristics with vast potential to deal with cellular stress conditions. PQC empowers 
the cells to tackle the anomalies in protein structure and function, and is implicated to be 
significantly enhanced in cancer cells, possibly helping them to thrive in several stresses. 
Chaperones are the most fundamental elements of proteostasis and are enhanced in cancer 
conditions.

The most versatile and remarkable functions of HSP90 have been discussed that can 
be seen to aid in tumor progression, metastasis, and inhibition of crucial elements involved 
in apoptosis. The UPS, on the other hand, regulates several pathways, such as the initiation 
of tumor development by the degradation of classical p53 protein. Furthermore, it is also 
involved in regulating Ras, NF-κB, PERK, IRE1, ATF5, and ATF6, which are predominantly 
engaged in modulating gene expression. Besides, UPS is deeply involved in maintaining 
proteostasis at the ER, cytoplasm, and mitochondria, thus compensating for the misfolded 
proteins arising from genomic instability in cancer. The apoptosis in these cells is significantly 
reduced, increasing tumor cells’ survival, and several critical elements of UPS help in gaining 
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anti-apoptotic nature. Multiple compounds targeting the proteasome and E3 ligases exist, 
though still much is desired in clinical translation. Other enzymes like deubiquitinases and 
E2 are also emerging as prospective therapeutic targets.
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