
Cell Physiol Biochem 2021;55:704-725
DOI: 10.33594/000000471
Published online: 18 November 2021 704

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

D’Amico et al.: Atrazine Worsen Pulmonary Fibrosis

Original Paper

Accepted: 5 November 2021

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of 
modified material requires written permission.

DOI: 10.33594/000000471
Published online: 18 November 2021

© 2021 The Author(s)
Published by Cell Physiol Biochem 
Press GmbH&Co. KG, Duesseldorf
www.cellphysiolbiochem.com

Atrazine Inhalation Worsen Pulmonary 
Fibrosis Regulating the Nuclear Factor-
Erythroid 2-Related Factor (Nrf2) Pathways 
Inducing Brain Comorbidities
Ramona D’Amicoa    Francesco Monacob    Roberta Fuscoa    Rosalba Siracusaa    
Daniela Impellizzeria    Alessio Filippo Peritorea    Rosalia Crupic    Enrico Gugliandoloc    
Salvatore Cuzzocreaa,d    Rosanna Di Paolaa    Tiziana Genovesea    Marika Cordarob

aDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of 
Messina, Messina, Italy, bDepartment of Biomedical, Dental and Morphological and Functional Imaging 
University of Messina, Messina, Italy, cDepartment of Veterinary Sciences, University of Messina, 
Messina, Italy, dDepartment of Pharmacological and Physiological Science, Saint Louis University 
School of Medicine, Saint Louis, MO, USA

Key Words
Oxidative stress • Inflammation • Atrazine • Fibrosis • Behavioral alteration

Abstract
Background/Aims: Pulmonary fibrosis can be caused by genetic abnormalities, autoimmune 
disorders or exposure to environmental pollutants. All these causes have in common the 
excessive production of oxidative stress species that initiate a cascade of molecular mechanism 
underlying fibrosis in a variety of organs, including lungs. The chemical name of Atrazine 
(ATR) is 6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine, and it is the most 
commonly used broad-spectrum herbicide in agricultural crops. Additionally, Bleomycin is 
a chemotherapeutic agent often used for different lymphoma with a seriously pulmonary 
complication. The most accredited hypothesis that may explain the mechanism of toxicity 
induced by ATR or bleomycin is exactly the production of reactive oxygen species (ROS) that 
leads to an unbalance in the physiological anti-oxidant system. However, until today, nobody 
has investigated the effect of ATR exposure during pulmonary fibrosis. Methods: Mice were 
subject to ATR exposure, to bleomycin injection or to both. At the end of experiment, the 
lungs and blood were collected. Additionally, we analyzed by different test such as open field, 
pole and rotarod test or other we investigated the effects of ATR or bleomycin exposure on 
behavior. Results: Following ATR or bleomycin induction, we found a significant increase in 
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lung damage, fibrosis, and oxidative stress. This condition was significantly worsened when 
the animals injected with bleomycin were also exposed to ATR. Additionally, we observed 
significant motor and non-motor impairment in animals exposed to ATR. Conclusion: Our 
study demonstrates that ATR exposure, decrease nuclear factor-erythroid 2-related factor 
(Nrf2) pathways in both lung and brain.

Introduction

The lung is subjected to a higher oxygen tension than the rest of the body [1]. Exogenous 
oxidants and pollutants increase oxidant production by activating inflammatory cells, which 
produces free radicals. In these conditions, several significant reactive oxygen species (ROS) 
are produced endogenously. The superoxide radical, hydrogen peroxide (H2O2), and the 
hydroxyl radical are among them [2]. The interactions of superoxide with nitric oxide can 
also produce a number of reactive nitrogen species (RNS), such as peroxynitrite (NO) [3].

Different studies suggest that oxidant–antioxidant imbalances in the lower respiratory 
tract play a critical role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). IPF is an 
example of an idiopathic disease; however, it can also be caused by genetic abnormalities, 
autoimmune disorders or exposure to environmental pollutants (EP) [4]. The existence of 
altered antioxidant levels in the lungs of patients with IPF indicates the occurrence of an 
oxidant–antioxidant imbalance [5-7]. Manganese-SOD (Mn-SOD), catalase (CAT), glutathione 
peroxidase (GPx) and heme-oxygenase 1 (HO-1) are some of the enzymes involved during 
oxidative stress condition. Although a reduction in antioxidant capacity is likely to increase 
oxidative stress, the observed antioxidant elevations are most likely an attempt to compensate 
for the increased oxidative stress in the lungs. It is obvious, however, that the usual redox 
balance in the lungs of people with IPF is disrupted [8-10].

Human exposure to environmental polluntats such as endocrine disrupting chemicals 
(EDCs) has attracted considerable attention in recent years as a result of epidemiological and 
experimental investigations linking them to altered human health. In the past, when EDCs 
were discovered, it was thought that they could only interfere with the endocrine system, 
and, for this reason, they were termed endocrine disrupting (ED), but today, this definition 
is considered outdated; in fact, different studies conducted on animals as well as clinical 
observations and epidemiological studies have indicated the role of endocrine disruptors 
in affecting the reproductive systems, prostate, breast, liver, thyroid, metabolism and lungs 
[11, 12]. EDs can be classified into three major groups: (i) food contact materials, such as 
bisphenol A; (ii) chemicals in products, such as phthalates or parabens; and (iii) pesticides, 
such as Atrazine (ATR) [13, 14].

The chemical name of ATR is 6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-
diamine, and it is the most commonly used broad-spectrum herbicide in agricultural crops 
[15]. The most accredited hypothesis that may explain the mechanism of toxicity induced 
by ATR is that the production of reactive oxygen species (ROS) leads to an unbalance in 
the physiological anti-oxidant system involving nuclear factor-erythroid 2-related factor 2 
(Nrf2) expression, superoxide dismutase (SOD), catalase (CAT) and glutathione [15-23]. 
Different studies demonstrated that, Nrf2 plays essential roles in protection against oxidant-
induced pulmonary inflammation and fibrosis [24-27]. It is probably due to the fact that Nrf2 
has an advantage over a single antioxidant molecule for the treatment of acute lung injury 
and pulmonary fibrosis, since Nrf2 coordinately induces a variety of self-defense genes, 
including antioxidant and phase II enzymes [28].

ATR contamination has been linked to many different serious health issues, such as 
dermatologic diseases, neurologic conditions, cancer and respiratory problems [29-39]. In 
particular, the Agricultural Health Research (AHS), one of the most important studies on 
respiratory pathologies, found a correlation between wheeze and Atrazine exposure [40]. 
However, it is critical to investigate the effects of occasional air exposure on the lungs when 
considering that some ATR is released into the atmosphere as a result of its preparation, 
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manufacturing, and disposal; that it also enters the environment through the loss of applied 
herbicide until it enters the soil surface; the particle distribution of ATR-containing dust; and 
that ATR volatilization after application to fields has been estimated to be up to 14% of the 
applied volume.

However, to date, the relationship between ATR exposure and PF has not been 
explored. PF can be easily and experimentally reproduced and developed by bleomycin 
administration. Its usage is justified by the fact that fibrosis is one of the most serious side 
effects of bleomycin treatment in humans. Bleomycin is thought to work by generating 
single- and double-strand DNA breaks in cells, stopping the cell cycle. In particular, the 
intratracheal instillation of bleomycin leads to a massive inflammatory reaction marked 
by the overexpression of pro-inflammatory cytokines and ROS, and alteration in SOD, 
CAT and GSH activity followed by increased levels of pro-fibrotic markers [41]. Recent 
studies additionally focused their attention on the role played by Nrf2 expression during 
PF, showing that it plays a particularly important role in the progression of this pathology 
[28, 42-50]. Additionally, in light of the fact that some studies have recently demonstrated 
strong connections between common extrapulmonary brain-related comorbidities, such as 
depression, anxiety and cognitive problems [51-59], we also evaluated for the first time the 
impact of ATR exposure on behavioral changes in animals subjected or not to bleomycin 
administration.

There are few studies in the literature evaluating the effects of pollutants on the 
worsening of PF and none regarding the effect of ATR on pulmonary fibrosis.

In this context, we evaluated the effects of ATR exposure in an animal model of 
bleomycin-induced pulmonary fibrosis to evaluate the impact of EDc on histological damage, 
cell recruitment, inflammation, oxidative stress and behavioral alterations.

Materials and Methods

Animals
CD1 male mice (8-week-old, 18-24g) were acquired from Envigo (Milan, Italy) and located in a 

controlled environment. The University of Messina Review Board for animal care (OPBA) approved the 
study (Ethical Code: 266/2021-PR). All animal experiments complied with the new Italian regulations 
(D.Lgs 2014/26), EU regulations (EU Directive 2010/63) and the ARRIVE guidelines.

Experimental Design and Groups
Bleomycin administration was performed as previously described [41, 60]. In detail, bleomycin 

sulphate (1mg/kg body weight) was delivered by a single intratracheal administration. A volume of 100 mL 
was injected at end-expiration to guarantee delivery to the distal airways. This was immediately followed by 
300 mL of air. Additionally, ATR aerosol was prepared dissolving 25 mg of ATR in a vehicle formed by saline 
with 10% of DMSO and given pro kilo through a Lovelace nebulizer (In-Tox Products, Albuquerque, NM) as 
previously described by D’Amico et al. [61-63].

Mice were randomly divided into groups:
(I) Sham: animals that were exposed to the vehicle (saline with 10% of DMSO).
(II) ATR: animals that were exposed to 25 mg of ATR for 14 days.
(III) Bleomycin group: animals that receive one injection of bleomycin.
(IV) Bleomycin+ATR group: animals that were exposed to 25 mg di ATR for 14 days after a single 

injection of bleomycin.
At the end of experiment, mice were sacrificed, and lung and brain tissue, bronchoalveolar lavage fluid 

(BALF) and blood samples were collected for histology and biochemical analysis as previously described 
[18, 20, 21, 64-66]. The dose of ATR was chosen based on another previously study, but for the first time, we 
decided to administer ATR not via oral gavage but via aerosol because our knowledge of the effects of ATR 
on the lungs remains poor [67-69].
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Measurement of Lung Edema
At the end of the experiment, wet lung weights were recorded. The lungs were subsequently dried 

for 48 h at 180°C and then weighed again. The water content of the lungs was calculated as the ratio of the 
wet:dry weight of the tissue [41, 60, 70, 71].

Bronchoalveolar Lavage (BAL)
At the end of experiment, mice were euthanized, and the tracheas were cannulated to perform the 

lavage for cell counting, as previously described [41, 60, 70, 71]. Additionally, from BAL, we analyzed the 
total protein content using a DC Protein Assay kit (Bio-Rad Laboratories, Hercules, CA, USA) as previously 
described [72, 73].

Western Blot Analysis of Cytosolic and Nuclear Extracts
Extracts from cytosol and nucleus from lung and brain were prepared as previously mentioned [74, 

75]. The following primary antibodies were used: anti-NRF-2 (1-500, Santa Cruz Biotechnology, Heidelberg, 
Germany, #sc-365949), anti-heme oxygenase 1 (HO-1; 1-500, Santa Cruz Biotechnology, Heidelberg, 
Germany, #sc-136960) in 1× PBS, 5% w/v non-fat dried milk, and 0.1% Tween-20 at 4 °C overnight. For the 
cytosolic and nuclear fraction, blots were also probed with b-actin and lamin A/C protein to ensure that they 
were filled with equivalent amounts of proteins (1:500; Santa Cruz Biotechnology). Signals were detected as 
previously described in our works [70, 76-82].

Histopathological Evaluation with Hematoxylin/Eosin and Masson Trichrome
Lungs were dehydrated, embedded in paraffin and stained in hematoxylin/eosin (H/E) or Masson 

Trichrome and analyzed using light microscopy LeicaDM6 connected to an Imaging system (LasX Navigator) 
and were blindly scored by two investigators without knowledge of the experimental groups. The severity of 
lung damage and fibrosis was assessed according to the method of Ashcroft et al. [60, 83-86].

Immunohistochemical evaluation of α-Smooth Muscle Actin (α-sma)
Lung sections were incubated with anti-α-sma antibody (1:250, Santa Cruz Biotechnology) as 

previously described by Cordaro et al. [77, 84]. Sections were then incubated with peroxidase-conjugated 
bovine anti-mouse immunoglobulin G (IgG) secondary antibody or peroxidase-conjugated goat anti-rabbit 
IgG (1:2,000 Jackson Immuno Research, West Grove, PA, USA). Specific marking was revealed with a biotin-
conjugated goat anti-rabbit IgG or the biotin-conjugated goat anti-mouse IgG and avidin-biotin peroxidase 
complex (Vector Laboratories, Burlingame, CA, USA). The digital images were analyzed as previously made 
in our laboratory [87-89]. All immunohistochemical analyses were carried out by two observers blinded to 
the treatment [90].

Evaluation of Tissue Lipid Peroxidation
Malonaldehyde (MDA) levels in lung tissue were assessed as previously described at the end of 

the experiments. Briefly, after homogenization, MDA absorbances was measured at 650 nm using a 
spectrophotometer [91-93].

Assessment of anti-oxidant system
The SOD activity assay was measured following the method described by Marklund and Marklund at 

420 nm [94]. The results are presented as SOD units/mg protein. Moreover, the activity of CAT was assessed 
following the method of Aebi in terms of mmoles of hydrogen peroxide (H2O2) consumed per min per mg of 
protein [95]. The results are presented as CAT units/mg protein. Furthermore, the level of the nonenzymatic 
cellular anti-oxidant glutathione was measured following the method of Moron et al. [96-98]. The results are 
presented as GSH units/mg protein.

Assessment of Cytokine Production
ELISA kits were used to test pro-inflammatory cytokine production, in particular, that of IL-1b, IL-6 

and TNF-a, in BALF at the end of experiment, as previously described [99]. The manufacturer’s manuals 
provide specific instructions for the test procedure.
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Behavioral testing
In another set of experiments, the same group previously described were subjected to behavioral tests 

on days 1 and 14 of the experiment. Mice were transferred to the behavior testing room 30 min prior to 
beginning the first trial to habituate to its conditions. Animals familiarized to the apparatus before every 
recording based on the behavioral test and were subjected to keep the condition as uniform as possible.

Three different reliable expert observers blinded to the injury status of the animals conducted the 
behavioral tests. The tests are described below.

Pole Test (PT)
A pole test (PT) was performed to detect motor alteration, such as bradykinesia, as previously described 

[100, 101]. Briefly, mice, were positioned with their head oriented upward on top of the pole and after the 
training the time required for the animals to orient themselves in a downward direction (time to T turn) and 
to descend to the base of the pole (total time) was recorded for five different trials.

Rotarod Test (RT)
Motor activity was assessed with rotary rod apparatus using a protocol previously described [102, 

103]. In brief, after the training sessions, animal was placed back on the drum immediately after falling up 
to five times in one session.

Catalepsy Test (CT)
Catalepsy, demarcated as a reduced capability to start movement and a failure to correct posture, was 

measured as previously described [104, 105]. In particular, after the training the length of time the mice 
maintained this position was recorded.

Elevated Pluz Maze (EPM)
The Elevated Pluz Maze (EPM) test was performed to evaluated the anxiety state as described 

previously [106, 107]. Briefly, after the training session, the number of entries into each arm and the number 
of crossings were recorded.

Open field test (OFT)
Locomotor activity and anxiety-like behavior were monitored by the OFT. After a training session, each 

mouse was gently placed in the center of the box, and activity was scored as a line crossing when a mouse 
removed all four paws from one square and entered another [108, 109].

Barnes Maze (BM)
The BM is a validated test often used to assess spatial learning and memory in rodents. After the 

training session, the performance is measured by the number of errors the rodent makes, and the rate of 
decline in the number of errors per trial is calculated to represent a learning curve [110].

Materials
Unless otherwise stated, all compounds were purchased from Sigma-Aldrich (Milan, Italy).

Statistical Evaluation
In this study, the data are expressed as the average ± SEM and represent at least 3 experiments carried 

out on different days. For in vivo studies, N represents the number of animals used. The number of animals 
used for in vivo studies was determined by G * Power 3.1 software (Heinrich-Heine-Universität Düsseldorf, 
Düsseldorf, Germany). Data were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for 
multiple comparisons. Data were analyzed by an experienced histopathologist, and all the studies were 
performed without knowledge of the treatments.
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Results

Exposure to ATR worsens bleomycin-induced histological damage
At the end of experiment, the lungs were removed, fixed, embedded in paraffin and 

stained with hematoxylin and eosin in order to evaluate their histological alterations. Fig. 
1B, C shows that exposure to ATR and the administration of bleomycin alone were able to 
induce significant alterations in the lung architecture, as highlighted in inflamed areas with 
notable presence of neutrophils and thickening of the lung tissue when compared to the 
sham group (Fig. 1A). The group of animals treated simultaneously with ATR and BLM (Fig. 
1D, Ashcroft score 1E) showed greater histological changes than those of the groups treated 
with single molecules.

Additionally, ATR and BLM administration caused an increase in the wet:dry lung weight 
ratio due to infiltration of inflammatory cells and edema when compared to sham-operated 
mice. Moreover, in this case, the group of animals treated simultaneously with ATR and BLM 
showed a significantly greater increase than that in the groups treated with single molecules 
(Fig. 1F).

Fig. 1. Exposure to ATR worsens bleomycin-induced histological damage. Bleomycin injection induced si-
gnificant pulmonary damage as well as an increase in the lung wet:dry ratio that were significantly worsen 
by the exposure to ATRazine. Representative photos of lung tissue slices stained by H/E. (A) Sham, (B) AT-
Razine, (C) Bleomycin, (D) Bleomycin+ATRazine, and (E) Lung alterations were assessed according to the 
Ashcroft score; (F) wet:dry lung weight ratio. Slides were observed by two investigators in a blinded fashion. 
The photos are demonstrative of at least three experiments achieved on different experimental days. Data 
are expressed as the mean ± SEM of n = 5 animals for each group. *p<0.05 vs. Sham; ***p<0.001 vs. Sham; 
°°°p<0.001 Bleomycin+ATR vs. Bleomycin.
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Exposure to ATR increases bleomycin-induced inflammatory cell migration
Early bleomycin damage to the lung is characterized by damage to the endothelial 

lining of small vessels and capillaries, accompanied by vascular congestion and increased 
microvascular permeability, which leads to an inflammatory response [111]. An increase in 
BAL cellularity was observed at the end of the experiment via cytospin analysis. We found 
that after ATR exposure or BLM administration, there was an increase in cellular density in 
BAL (Fig. 2A–E for total cells, neutrophils, lymphocytes and macrophages, respectively) as 
well as an increase in protein content (Fig. 2E) compared to the sham group. In line with 
the increased infiltration of inflammatory cells observed in the histology, we found a more 
significant increase in cellular density in the group simultaneously exposed to ATR and BLM 
in all parameters evaluated.

Exposure to ATR worsens bleomycin-induced fibrosis
Masson’s trichrome staining and immunohistochemical localization of a-SMA were 

adopted to examine the pulmonary fibrosis in lung tissue. Histopathological results showed 
that the ATR exposure (Fig. 3B) and BLM (Fig. 3C) significantly induce fibrotic lesions and 
collagen accumulation in the lungs of mice when compared to the sham group (Fig. 3A). 

Fig. 2. Exposure to ATR increases bleomycin-induced inflammatory cell migration. Total (A) and differential 
cell counts (B for neutrophils; C for lymphocytes; D for macrophages) in bronchoalveolar lavage (BAL) fluid 
from all groups. Total cell numbers as well as differential cell counts in BAL were significantly higher than 
those in controls in the Bleomycin+ATR group as well as in the group with single molecules. Simultaneous 
exposure to bleomycin and ATR further increased the number of cells in BAL. Moreover, the total protein 
concentration in BAL (E) fluid collected from the group exposed to both compounds was significantly higher 
than that of single molecules and the sham group. Data are expressed as the mean ± SEM of n = 5 animals for 
each group. *p<0.05 vs. Sham; **p<0.01 vs. Sham; ***p<0.001 vs. Sham; °p<0.05 Bleomycin+ATR vs. Bleomy-
cin; °°p<0.01 Bleomycin+ATR vs. Bleomycin; °°°p<0.001 Bleomycin+ATR vs. Bleomycin.
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Moreover, exposure to ART at the same time as the BLM injection showed greater worsening 
than that of the single molecules (Fig. 3D; see graph 3E). Another widely consolidated marker 
of fibrosis in the literature is represented by the expression of the a-SMA protein [60, 112]. 
As assumed, we found a significant staining increase in the group subjected to ATR (Fig. 4B; 
see graph 4E) or BLM (Fig. 4C; see graph 4E), and an even more significant increase in the 
group subjected to both (Fig. 4D; see graph 4E) when compared to the sham group (Fig. 4A; 
see graph 4E).

Exposure to ATR increases bleomycin-induced pro-inflammatory cytokine release
During bleomycin-induced inflammatory response, a key role is played by the cytokines 

that are capable of contributing to the fibrotic response as well as to the direct effects on 
fibroblast proliferation and extracellular matrix production. We found a significant increase 
in the BAL of IL-1b (Fig. 5A), IL-6 (Fig. 5B) and TNF-a (Fig. 5C) release in the groups subjected 
to ATR or BLM and a more significant increase in the group subjected to both molecules.

ATR exposure worsen oxidative/nitrosative stress and lipid peroxidation
As is well known, administration of bleomycin causes cellular toxicity via production 

of reactive oxygen species (ROS), which leads to serious damage to the lungs. Several 
previously studies demonstrated that antioxidants such as superoxide dismutase (SOD) (Fig. 
6A), catalase (CAT) (Fig. 6B) and those generated by the glutathione (GSH) system (Fig. 6C) 
are involved in the partial protection from BLM-induced toxicity.

In our work, all of the parameters taken in consideration significantly decreased after 
the exposure to ATR or BLM injection, and to an extremely significant extent in the group 
expose to both. With the aim of investigating this alteration even further upstream, we 
evaluated the expression of Nrf-2 (Fig. 7A, A’) and HO-1 (Fig. 7B, B’) by Western blot analysis 
and found that these two factors, also involved in the physiological regulation of the oxidative 
balance of the cells, were significantly reduced following exposure to the single molecules 
and even more following simultaneous exposure to both. Therefore, in a similar way, the 

Fig. 3. Exposure to ATR worsens bleomycin-induced fibrosis. Masson trichrome staining was used to 
evaluate the degree of collagen deposition after exposure to bleomycin, ATR or both. Representative photos 
of lung tissue stained with Masson collected from (A) Sham, (B)ATRazine, (C) Bleomycin and (D) Bleomy-
cin+ATRazine; (E) staining area. Injection of bleomycin and exposure to ATR significantly increased collagen 
deposition compared to that in the sham group. The photos are demonstrative of at least three experiments 
carried out on different experimental days. Data are expressed as the mean ± SEM of n = 5 animals for each 
group. **p<0.01 vs. Sham; ***p<0.001 vs. Sham.
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overproduction of free radicals resulted in an increase in lipid peroxidation, as reflected by 
the MDA levels (Fig. 7C).

The toxicity with bleomycin is initiated by direct oxidative damage, which then leads 
to subsequent general inflammation mediated by the generation of both intracellular and 
extracellular ROS. In particular, we found a significant increase in H2O2 in the plasma (Fig. 
8A) as well as ROS (Fig. 8B) and RNS (Fig. 8C) species in the group subjected to ATR or BLM 
and even more so in the group subjected to both.

Fig. 4. Exposure to ATR increases a-SMA expression. Immunohistochemical staining was used to investiga-
ted a-SMA expression in the lung after exposure to bleomycin, ATR or both. Representative photos collected 
from (A) Sham, (B)ATRazine, (C) Bleomycin and (D) Bleomycin+ATRazine; (E) graphic representation of 
a-SMA expression. Injection of bleomycin and exposure to ATR significantly increased a-SMA expression 
compared to that in the sham group. Moreover, the exposure to both compounds further increased a-SMA 
expression compared to that of the single molecules. The photos are demonstrative of at least three experi-
ments carried out on different experimental days. Data are expressed as the mean ± SEM of n = 5 animals for 
each group. ***p<0.001 vs. Sham; °°°p<0.001 Bleomycin+ATR vs. Bleomycin.
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Fig. 6. Exposure to ATR alters 
the physiological anti-oxidant 
system. Bleomycin instillation 
and/or ATR exposure induces 
significant perturbance to 
SOD (A), CAT (B) and GSH (C) 
activity. Data are expressed 
as the mean ± SEM of n = 5 
mice/group. *p<0.05 vs. Sham; 
***p<0.001 vs. Sham; °p<0.05 
Bleomycin+ATR vs. Bleomy-
cin; °°p<0.01 Bleomycin+ATR 
vs. Bleomycin; °°°p<0.001 Ble- 
omycin+ATR vs. Bleomycin.
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Fig. 7. Exposure to ATR decreases Nrf-2-HO-1 expression and increases lipid peroxidation in lung. Western 
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cin or ATR exposure. Additionally, an even more marked reduction was observed in the group subjected to 
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ATR exposure induces motor and non motor alterations
Some studies have demonstrated that behavioral comorbidities are probable in patients 

suffering from pulmonary pathologies [113]. On the other hand, to date, the knowledge 
about the effect of ATR and behavioral alterations remains poor and limited [65, 114]. For 
this reason, to investigate the relationship between lung inflammation and brain alteration, 
we analyzed the motor activity 1 day prior and 14 days after exposure to ATR, BLM or both. 
The data at time point 0 are not shown, as no significant differences between the different 
groups were observed. The pole test was used to assess bradykinesia [115]. Total time (Fig. 
9A) and time to turn (Fig. 9B) did not undergo substantial changes following injections 
with bleomycin; however, they showed a significant increase in the groups exposed to 
ATR, suggesting a substantial augmentation of bradykinesia. In addition, using the rotarod 
test (Fig. 9C) and catalepsy test (Fig. 9D), we evaluated the motor function and cataleptic 
symptoms.

After 14 days, the group subjected to only injection with bleomycin showed minor, non-
significant changes; however, in the group receiving ATR with or without bleomycin, the 
mice showed a significant reduction in motor activity and an increase in catalepsy.

Using different, well-recognized behavioral tests, we analyzed the degree of anxiety 
and locomotor function of mice with lung problems. Using the EPM test, we noted that 
mice exposed to ATR with or without BLM spent less time in open arms than control mice; 
however, BLM alone did not modify the time spent in open arms (Fig. 10A). As expected, the 
number of crossings was significantly reduced in the group exposed to ATR with or without 
BLM (Fig. 10B). This anxiety condition was also observed in mice exposed to ATR via the use 
of the OFT. In fact, mice exposed to ATR showed an increase in the tendency to stay outside 
the field near the wall when compared to the sham group. Moreover, in this case, BLM alone 
showed no significant alteration (Fig. 10C).

Furthermore, spatial learning and memory were assessed using a Barnes Maze. We 
observed an increase in escape latency (Fig. 10D) and in the average number of errors (Fig. 
10E) in the mice in the mice exposed to ATR with or without BLM when compared to the 
sham group. On the other hand, the group that received BLM alone showed similar behavior 
to that of the sham group.
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Fig. 8. Exposure to ATR induces general oxidati-
ve stress state. Using the ELISA kit in the plasma, 
we found that bleomycin and/or ATR exposure 
induces significant general oxidative/nitrosative 
stress, in particular in H2O2 (A) ROS, and (B) and 
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Fig. 9. Exposure to ATR in-
duces motor impairment. 
After 14 days, mice expo-
sed to ATR with or without 
bleomycin exhibited signi-
ficant motor dysfunction as 
indicated by an increase in 
total time (A) and time to 
turn (B) and by a decrease 
in time spent on the rotarod 
(C). Moreover, catalepsy (D) 
indicated that ATR exposu-
re but not bleomycin instil-
lation induced significantly 
motor impairment. Data 
are expressed as the mean 
± SEM of n = 5 mice/group; 
p<0.001 vs. Sham; °p<0.05 
Bleomycin+ATR vs. Bleomy-
cin; °°p<0.01 Bleomycin+ 
ATR vs. Bleomycin.
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with or without BLM spent less time in open arms (A) and presented a reduced number of crossing (B) 
compared to that of the sham group. Additionally, using OFT, we observed that mice exposed to ATR tended 
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ATR exposure induce Nrf-2 imbalance in brain
To better understand if the behavioral alterations were related to oxidative stress we 

investigated the expression of Nrf-2 (Fig. 11A, A’) as well as HO-1 (Fig. 11B, B’) also in whole 
brain. We found that both markers were significantly decreased following exposure with 
ATR or bleomycin, and that this decrease was even more marked following exposure to both 
molecules.

Discussion

ATR is a herbicide commonly used for the control of broadleaf weeds. It is a man-made 
compound that does not exist naturally and is widely used on corn crops in the United States 
and Europe. The United States Environmental Protection Agency (EPA) has designated 
ATR as a restricted-use pesticide (RUP), meaning that only licensed herbicide users can 
purchase or use it due to its persistence in water and its various adverse health effects on 
humans. The maximum contamination level (MCL) for ATR is set at 3 ppb (0.003 g/L) by 
EPA regulations [116]. Unlike the United States, Europe has stricter regulations on the use 
of ATR. A pesticides directive issued by the European Union (EU) in 1991 restricted the 
use of chemicals that were accused of causing harm to human health, groundwater, or the 
atmosphere [117]. Significant quantities of ATR that are not absorbed by plants will end 
up in the environment. ATR is only weakly adsorbed by soil particles after application and, 
thus, mainly leaves the field via runoff water. Rainfall washes large quantities of ATR out of 
the soil and into nearby areas, such as streams, reservoirs, and other waterways. Moreover, 
after it is added to the soil, small quantities of ATR may reach the air [118]. Humans are 
mainly exposed to ATR by the intake of tainted drinking water. However, inhalation exposure 
may occur during application on rare occasions. ATR’s negative effects are still being studied 
[119]. In humans, increased risk of intrauterine growth retardation, decreased semen 
content, and spontaneous abortions were observed in many peer-reviewed studies, as were 
demasculinization and hermaphrodism in frogs [120-124].
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Fig. 11. Exposure to ATR decreases Nrf-2-HO-1 expression also in brain. Western blot analysis of brain 
tissue demonstrated that Nrf2 (A) and HO-1 (B) expressions were significantly reduced after bleomycin or 
ATR exposure. Additionally, an even more marked reduction was observed in the group subjected to both 
molecules. Protein lysates were also incubated with a β-actin or laminin antibody in order to verify that all 
samples had been loaded in uniform quantities. Densitometric representation of Nrf2 (A’) and HO-1 (B’) 
expressions. Data are expressed as the mean ± SEM of n = 5 mice/group. *p<0.05 vs. Sham; **p<0.01 vs. 
Sham; ***p<0.001 vs. Sham; °p<0.05 Bleomycin+ATR vs. Bleomycin; °°p<0.01 Bleomycin+ATR vs. Bleomycin.
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IPF is a serious health issue that affects nearly 200,000 people in the United States and 
more than 5 million people globally. The disease has a 50% death rate in the first three years 
after diagnosis, although the prognosis is unpredictable [125].

Considering how many people suffer of IPF and considering that ATR is release in the 
atmosphere during production or application, is mandatory to investigate what happen 
when people are exposed to both.

Using an experimental model of PF induced by bleomycin, we analyzed for the first 
time the effects of ATR exposure on the inflammatory, oxidative and fibrotic parameters. 
Bleomycin-induced fibrosis is a well-established experimental model that reproduces the 
physiopathology of human disease, which is characterized by lung inflammation and loss of 
the original architecture of the lung due to excessive and disorganized expression, deposition 
of collagen and extracellular matrix and inflammation.

It has thus been demonstrated that ATR can induce oxidative stress conditions following 
oxidative imbalance induced by the impairment of physiological antioxidant defenses, 
and previous studies have reported the effect of ATR on the lungs. Here, for the time, we 
determined whether ATR exposure may contribute to the worsening of PF [17, 20, 64, 126-
128].

PF is characterized by progressive lesions of the pulmonary parenchyma, inflammatory 
infiltrate, fibrosis in the interstitial space and cellular recruitment [129, 130]. Here, we first 
evaluated the lung damage and the cells recruited in the BAL. Our results showed FA exposure 
in fibrosis, and we noted that ATR not only causes an alteration in the lung tissue as well as 
significant cell recruitment, but it is also able to further worsen tissue alterations and cellular 
recruitment induced by bleomycin. In addition, mediators released by cells contribute to 
the proliferation of resident fibroblasts as well as their differentiation into myofibroblasts 
(activated fibroblasts secreting large amounts of collagen) [131]. In our study, we additionally 
demonstrated for the first time by Masson trichrome and immunohistochemical localization 
of a-SMA expression that air exposure to ATR induces a significant promotion of fibrosis 
and a further increase in collagen deposition and a-SMA expression when administrated 
simultaneously with bleomycin. Different cytokines play crucial roles in PF progression 
[132, 133]. For this reason, we determined whether ATR is involved in the cellular secretion 
of IL-1b, IL-6 and TNF-a. Our results show the IL-1b, IL-6 and TNF-a secretions in the group 
subjected to bleomycin and demonstrate that ATR was significantly high in the groups that 
had received single treatment.

The respiratory system is one of the body’s main connections with the outside world, and 
it must deal with and detoxify antigens and particles inhaled. It must regulate and express 
inflammatory pathways in such a way that the respiratory system’s primary functions are 
preserved while still providing protection against invasion by foreign infective agents or 
antigens [134-137]. As described above, ATR exposure and PF have in common an increase 
in ROS and RNS as well as alterations in Nrf2 pathways, SOD, CAT and GSH [49, 138].

In our work, we found that following exposure to ATR, bleomycin or both via inhalation, 
cells undergo a decrease in activity of physiological antioxidants. Moreover, in these 
parameters, ATR exposure together with bleomycin injection significantly worsens the 
whole situation.

When a condition of very strong oxidative stress is established, it is unlikely to remain 
compartmentalized in a single organ; rather, it often affects the whole body. Many oxidative 
stress measurements may be collected using minimally invasive methods, for example, in 
blood, making them reasonably simple to use in both animal and human studies. In our work, 
we noted that in blood, the onset of a generalized increase in oxidative and nitrosative stress 
that significantly worsened when ATR was inhaled by mice exposed to bleomycin. There 
is a link between lung difficulties and brain comorbidities, according to many research. 
This is likely attributable to 1) decreased treatment compliance in depressed patients; 2) a 
worsened sense of dyspnea in depressed and anxious patients, which may result in greater 
hospital admissions; and 3) a sad and/or anxious patient’s ability to cope with a chronic 
disease. On the other hand, cognitive problems are associated with worsening of the disease 
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progression, which leads to an infinity loop until death [139-149]. Considering the severity 
of the worsened symptoms, the treatment for such brain comorbidities requires further 
investigations [150]. In our study, we observed a significant alteration in motor and non-
motor symptoms in mice exposed to both ATR and bleomycin but not in mice exposed to 
only bleomycin.

Despite the fact that different research have focused on Nrf-2’s neuroprotective 
properties against neurodegenerative stimuli/damage, the physiological roles Nrf2 plays in 
the brain have not been extensively characterized. While a decrease of Nrf2 seems not to lead 
immediately to behavioral disorders, we assume that the alteration of Nrf2 may increase the 
risk for these diseases in combination with other genetic or environmental factors.

Taken together, our data represent an addition to the complex information on ATR- 
induced pulmonary toxicity. In particular, in this study, we aimed to demonstrate that not 
only is atrazine able to induce alterations to lung parenchyma, fibrosis, oxidative stress, 
inflammation and behavioral alterations, but it can also worsen the situation that arises 
following the injection of bleomycin. This could also represent the first step in recognizing 
that this substance as a problematic air pollutant and not only a water and/or soil pollutant.
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