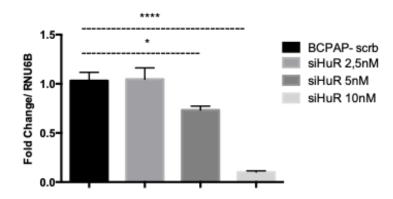
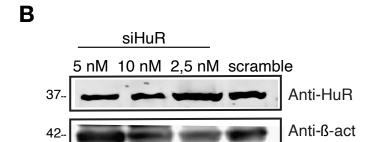
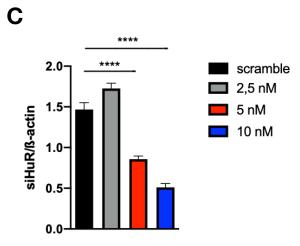

Supplementary Material

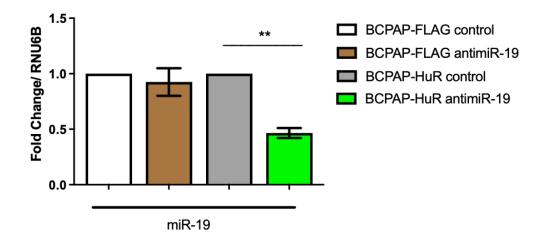
Human Antigen R (HuR) Facilitates miR-19 Synthesis and Affects Cellular Kinetics in Papillary Thyroid Cancer


Guilherme Henrique Gatti da Silva Maria Gabriela Pereira dos Santos Helder Yudi Nagasse Patricia Pereira Coltri


Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil



Supplementary Figure 1. Confirmation of FLAG-HuR over-expression in (A, C) BCPAP and (B, D) HEK-293T cells using qPCR and western blot. (A, B) Cell lines transfected with empty pFLAG were used as controls (white bars). The amplification of β -actin was used to normalize Ct values. The y-axis represents the fold change of expression calculated after normalization. Error bars represent standard deviations calculated from three independent measurements. (C, D) Western blot using anti-HuR and anti- β -actin were performed with the control and HuR over-expression cell lines, and optical densitometry was calculated using Image J software. The y-axis shows the signal intensity after β -actin normalization. *P < 0.05, **P < 0.005, ***P < 0.0005.



Supplementary Figure 2. Confirmation of HuR knockdown. (A) qPCR analysis of HuR mRNA knockdown in BCPAP cells using siRNA-HuR (siHuR) at 2.5, 5, and 10 nM concentrations. HuR mRNA levels were assessed by qPCR with specific primers and normalization was performed with RNU6B amplification; BCPAP transfected with scrambled siRNA was used as a control (BCPAP-scrb). (B) HuR protein knockdown was analyzed after the use of 2.5, 5 and 10 nM siHuR by western blot using anti-HuR (30 kDa) and anti-β-actin as endogenous control (42 kDa). Cells transfected with scrambled siRNA were used as a control. (C) Optical densitometry was calculated using Image J software. The y-axis shows the signal intensity after β-actin normalization; **** P < 0.0005; *P < 0.05.

Supplementary Figure 3. Confirmation of miR-19a inhibition in BCPAP-HuR cells. qRT-PCR analysis of miR-19a using BCPAP-FLAG (white), BCPAP-FLAG antimiR-19a (brown), BCPAP-HuR (grey), and BCPAP-HuR antimiR-19a (green). miR-19a levels were assessed using SYBR Green and specific primers. The y-axis represents the fold change of expression calculated after normalization with RNU6B primers. BCPAP-FLAG and BCPAP-HuR were used as controls to calculate miR-19a levels on the respective groups after antimiR-19a transfection. Error bars represent standard deviations calculated from three independent measurements. **P < 0.005.

Supplementary Table S1. Oligonucleotide sequences used in this work

Oligo	Sequence (5'-3')	Source
miR-17a - F	ATAGCCTCGAGGTCAGAATAATG	this work
miR-17a - R	ATGATAAGCTTGTCACCATAATG	this work
miR-18 - F	ATAGCCTCGAGTGTTCTAAGG	[1]
miR-18 - R	ATGATAAGCTTTGCCAGAAGG	[1]
miR-19a - F	ATAGCCTCGAGGCAGTCCTCTGTTAG	[1]
miR-19a - R	ATGATAAGCTTGCAGGCCACCATCAG	[1]
miR-92 - F	ATAGCCTCGAGCTTTCTACAC	this work
miR-92 - R	ATGATAAGCTTCCAAACTCAAC	this work
RNU6B - F	CTCGCTTCGGCAGCACATATAC	this work
RNU6B- R	GGAACGCTTCACGAATTTGCGTG	this work
HuR - F	GACTACAGGTTTGTCCAGAG	this work
HuR - R	GGGGGTTTATGACCATTGAA	this work
B-actin - F	ACCTTCTACAATGAGCTGCG	this work
B- actin - R	CCTGGATAGCAACGTACATGG	this work
hsa-miR19a	UGUGCAAAUCUAUGCAAAACUGA	Thermo
hsa-miR19b	UGUGCAAAUCCAUGCAAAACUGA	Thermo
hsa-miR18	UAAGGUGCAUCUAGUGCAGAUAG	Thermo
hsa-miR423	AGCUCGGUCUGAGGCCCCUCAGU	Thermo
anti-miR-19a	commercial	Ambion cat# 4464084
anti-miR-negative		Ambion cat#
control #1	commercial	4464076
siHuR	UGAACUACGUGACCGCGAATT	Thermo cat# 4390824
siRNA-negative control	commercial	Thermo cat# 4390843

1. Paiva MM, Kimura ET, Coltri PP: miR18a and miR19a Recruit Specific Proteins for Splicing in Thyroid Cancer Cells. Cancer Genomics Proteomics 2017;14(5):373-381.