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Abstract
Radioactivity and radiation-induced mutations are believed to be primary causal examples of 
cancer-initiating events (stimulus). The assumption that an increase in cancer risk develops 
from any amount of radiation gave rise to the linear no-threshold model. This also led to the 
assumption that cancer is caused by somatic mutations as described by the somatic mutation 
theory. Against this backdrop, in actuality only ~5%–10% of cancers result from somatic 
mutations or its various modifications, while ~80% of cancers are still termed as ‘sporadic’, 
meaning that their cause is unknown. Therefore, both the linear no-threshold model and the 
somatic mutation theory have resulted in an incongruity in thinking. Decades of molecular and 
clinical research since 2012 led to the development of the cancer paradigm, “Epistemology of 
the origin of cancer”, which explains why the majority of cancers originate as a result of a six-
step sequence of events. An understanding of the essentials of physics helps to explain the 
interconnections between physics and the biology of cancer. This allows for a much-needed 
reconciliation of past errors and leads to a deeper understanding of carcinogenesis.
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Introduction

Radioactivity in the form of ionizing radiation can induce mutations in DNA and 
is believed to be the primary causal example of a cancer-initiating event. The Linear No-
Threshold (LNT) model was created based on the assumption that any amount of radiation 
had some detrimental genetic effects in the form of DNA damage that could then lead to 
cancer, i.e. a zero-threshold assumption or that there is no radiation dose that is without an 
incremental quantifiable increase in cancer risk. This was the basis for the belief that cancer 
is caused by mutations as described by the somatic mutation theory (SMT). In fact, only a 
small proportion of cancers (~5%–10%) have been shown to result from mutations over the 
past 100 years and the majority (80%) of cancers are therefore still referred to as ‘sporadic’, 
meaning that their cause remains unknown [1-14].

Decades of molecular and clinical research led us in 2012 to the development of the 
cancer paradigm “Epistemology of the origin of cancer”, with a complex six-step set of events 
published in open-access format [9]. This paradigm explains why the majority of cancers 
originate after this sequence of events, namely (1) a pathogenic stimulus (biological or 
chemical) followed by (2) chronic inflammation, from which develops (3) fibrosis with 
associated changes in the cellular microenvironment. From these changes, (4) a pre-
cancerous niche develops, which triggers the deployment of (5) a chronic stress escape 
strategy. When this condition fails to resolve, (6) the transition of a normal cell to a cancer 
cell occurs. The initial concept was realized between 2014 and 2016 including the original 
cancer paradigm and five papers [9-11, 15, 16]. This was followed by critical analyses of 
available knowledge five years after the paradigm was first published [17-26].

To date, the assessment of the contributions of physics to the process of carcinogenesis 
has been missing. Physics is of much greater significance in cancer research than is generally 
perceived. The essentials of physics provide a deeper understanding of how and why 
the LNT is invalid and thus gives an impetus for further critical thinking and analyses to 
more completely understand carcinogenesis, which describes the complex, incompletely 
understood process by which changes in cells/tissues/organs lead to the disease that we 
refer to as cancer (see also Supplementary Material – for all supplementary material see 
www.cellphysiolbiochem.com).

Radioactivity

For their joint discoveries, Antoine Henri Becquerel (1852–1908) (spontaneous 
radioactivity from uranium salts), and Marie (1867-1934) and Pierre Curie (1859-1906) 
(identification of polonium), received the Nobel Prize in Physics in 1903. Marie Curie reported 
on radium between 1898 and 1907 [27-33], and Pierre Curie and his student Albert Laborde 
measured continuous emissions from radium in 1903 [32]. More detailed information about 
the discoveries of radiation and in Physics is provided in the Supplementary Material (see 
also Fig. 1-10 in Supplementary Material).

Background radiation
Background radiation consists of approximately 82% natural and approximately 18% 

man-made radiation, which is mainly due to medical X-rays (58%), nuclear medicine (21%), 
consumer products (16%), occupational sources (2%), atomic bomb fallout (2%), and 
nuclear fuel cycles (1%) [34]. Exposure to ionizing radiation is a consistent occurrence for 
all life on Earth. Approximately 90% of the annual radiation dose “for a person living in the US 
comes from natural sources such as cosmic radiation and radioactive rocks” ([35], reviewed in 
[36]). Cosmic radiation originates from the sun and distant galaxies [37].

According to the International Atomic Energy Agency (IAEA) of the United Nations 
Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) report in 1993, natural 
background radiation comes from “cosmic radiation, external radiation from radionuclides in 
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the earth’s crust and internal radiation from radionuclides inhaled or ingested and retained 
in the body” [38]. In summary, “exposures due to cosmic rays, terrestrial gamma rays and 
ingestion vary only slightly with time, so they can be regarded as the background exposure to 
natural sources.”

Radiation exposure in people is influenced by multiple factors. Geographic location is one 
such factor, as cosmic radiation increases with elevation above mean sea level. Background 
radiation also depends on local geology, and here preexisting radon is of importance, as 
radon sources affect exposure. In 1993, the UNSCEAR sought to establish a representative 
approach describing radiation exposure as follows: the determination of “radiation exposures 
from various sources consists of presenting the collective dose to the world population received 
or committed (a) from the end of 1945 to the end of 1992 (47 years) for discrete events and 
(b) for a period of 50 years at the current rate of practice or exposure for all other sources, 
including natural sources.” This approach was deemed to be reasonable for a period of 50 
years (25 years before and after the present), although it has been stated that it is “likely that 
this assumption overestimates the future doses from practices that are not rapidly expanding, 
because improved techniques and standards of protection will reduce the doses per unit of 
practice” but it was not clear, how doses are affected by practice.

The worldwide average annual effective radiation dose in adults from all natural 
sources was estimated to be 2.0 mSv [39] in 1982, with a later estimate of 2.4 mSv (range: 
1−10), consisting of 0.9 mSv (37.5%) from external exposure (cosmic rays: 0.4 mSv [16.7%]; 
terrestrial gamma rays: 0.5 mSv [20.8%]) and 1.5 mSv (62.5%) from internal exposure 
(inhalation [primarily radon]: 1.2 mSv [50%]; ingestion: 0.3 mSv [12.5%]) [40, 41]. The 
dosage levels are listed in Table 1 [modified according to 34] (see also Supplementary 
Material, Section ‘measurement parameters’). One’s exposure depends on several variables. 
For example, cosmic ray dose rates depend on altitude, with exposure rates being five-fold 
higher at higher altitudes compared with average rates at sea level [38]. Terrestrial γ-ray 
doses depend on local geology and residential ventilation such that some communities may 
have an exposure rate that is 100-fold higher than average due to the presence of certain 
types of naturally occurring radioactive minerals.

While the global average human exposure to natural background radiation is 2.4 mSv/a 
(270 nSv/h avg) [40, 41], there are large geographic variations [42]. For example, the average 
natural background radiation in Finland is ~8 mSv/a (~900 nSv/h avg) versus 90 μSv/h (800 
mSv/avg) on a monazite beach near Guarapari, Brazil [43]. A Finish nationwide register-
based case-control study on the Chernobyl fallout revealed that “Overall, background gamma 
radiation showed a non-significant association with the OR of childhood leukemia (OR 1.01, 
95% CI 0.97, 1.05 for a 10-nSv/h increase in average equivalent dose rate to red bone marrow)” 
[44]. No accumulation of dose with age was found.

Table 1. Units of dose (modified from [34])

 



Cell Physiol Biochem 2022;56:546-572
DOI: 10.33594/000000575
Published online: 30 September 2022 549

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2022 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Brücher et al.: Essentials of Physics and Carcinogenesis

High background radiation (HBR) exposure
Depending on the geographic location, different effects of high background radiation 

exposure have been observed. For example, people living in mountainous areas can be 
exposed to high levels of natural background radioactivity because they live in so-called 
HBRAs (high-background-radiation areas) containing high concentrations of thorium 
and uranium [42, 45] (see also Supplementary Material, Section ‘nuclear fission and atom 
splitting’). However, to date no increases in cancer rates have been observed in HBRAs, such 
as China [46] or in Poland, and an even lower cancer death rate has been observed in these 
countries [47]. Moreover, the prevalence of thyroiditis and hypothyroidism have not been 
shown to be correlated with natural radiation exposures in Karunagapally, India, which is a 
HBRA [48].

Interestingly, higher rates of unscheduled DNA synthesis have been reported for people 
living in HBRAs compared with the control areas of Enping and Taishan Counties, China, 
without an increased all-cancer mortality rate. More specifically, rates for leukemia, breast 
cancer, and lung cancer, which are thought to be influenced by radiation, are not higher 
in HBRAs: “respective average annual doses are about 330 and 110 mR/yr, in the HBRAs in 
Yangjiang County approximately 90% of the annual radiation dose.” The above-mentioned 
areas showed nominally lower cancer mortality rates, although the differences were not 
statistically significant [49]. This finding agrees with various investigations: seeds from a 
given plant species do not exhibit phenotypic changes when exposed to radiation at high 
altitudes with correspondingly higher levels of cosmic rays [50], and data revealed that 
HBRAs did not have increased leukemia rates [51].

Furthermore, background radiation has not been demonstrated as a significant predictor 
of leukemia mortality rates when data were examined without regard to age [52]. A negative 
lung cancer correlation was found in three Rocky Mountain states, which have a 3.2-fold-
higher natural background radiation level than three Gulf Coast states, and a strong negative 
correlation between lung cancer and natural radon levels has also been observed [53].

The Life Span Study (LSS) revealed that at doses below 0.1 Gray, cancer incidence is 
negligible; however, the cancer incidence increases to 29.5% at 1 Gray and to 61% at 2 Gray 
(hinting at a linear dose-response). However, in strongly irradiated survivors, such levels 
were observed for less than 10% of the survivors of the A-bomb [54]. Thus, 2 Gray (2 J/kg) 
is the amount of radiation necessary to produce the same effect on living organisms as 1 
Gray of high-penetration X-rays, which is equal to 2000 mSv (2 Sv). There is no evidence of 
radiation effects for doses below about 500 mSv (0.5 Sv) [55]. It has been shown that a low 
LET radiation dose of 0.1 cGy per year results in an average of approximately 10−7 mutations 
per cell per day [56] but this is not just a very low number but also a number that does not 
take DNA repair, an integral component of all living organisms, into account.

Further detailed information on background radiation is also given in the Supplementary 
Material, section ‘background radiation’.

Hiroshima and Nagasaki 1945

Between 1939 and 1945, the Manhattan Project at the Los Alamos Scientific Laboratory 
in New Mexico, United States, revealed that plutonium was more toxic to humans than 
radium, but less hazardous in practical terms (see also Supplement, Section ‘quantum age’). 
These findings led to the development of nuclear bombs, with their use to devastating effect 
in 1945 [57, 58]. Following the first nuclear explosion on 16 July 1945 (Trinity test), the 
first atomic bombs were detonated on 6 August 1945 at 08:15 AM on Hiroshima and on 9 
August 1945 at 11:02 AM on Nagasaki. The bombs were different in that the Hiroshima bomb 
contained uranium whereas the Nagasaki bomb contained plutonium as discussed elsewhere 
in this paper (see also Supplementary Material, Section ‘electromagnetic radiation’). 
Although reports vary, the direct casualties were devastating. Approximately 170,000 
citizens died immediately [Hiroshima: 90,000–120,000; Nagasaki: 60,000–80,000] [59] 
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due to the extreme heat and pressure of 
the blasts, which resulted in an extensive 
firestorm emanating from the hypocenter 
(explosion site). Ionizing radiation was 
emitted, and nearly all people within 1.5 
km of the hypocenter were killed [54, 59, 
60].

Both bombs exploded before reaching 
the ground (Table 2) (according to [34, 
55, 61-63]); thus, the fission products 
were dispersed into the atmosphere and 
spread over a large area.

The perception at the time was that radiation from atomic bombs resulted in health 
effects such as leukemia and other cancers as well as a high risk of genetic malformations. 
However, the results of long-term studies do not support this view, particularly regarding 
the assumed genetic effects. The first study with a defined objective (not a report of one or 
multiple cases) was published in 1953: “There is no indication from this study of any ‘unusual’ 
sensitivity of human genes to irradiation” ([64], reviewed in [54]).

However, this perception remained and many long-term studies of the survivors were 
conducted. In 1947, the United States founded the Atomic Bomb Casualty Commission, which 
was later restructured as the Japanese Radiation Effects Research Foundation, financed 
by the United States and Japan. Since 1955, such investigations have been performed in a 
systematic manner, and the LSS began, which has follow-up data covering approximately 
60 years for cohorts of individuals recruited between 1951 and 1953. This study includes 
approximately 120,000 individuals (54,000 within 2.5 km of the hypocenter [relatively high 
radiation doses], 40,000 2.5–10 km outside the hypocenter matched with regard to city, age, 
and sex [low/negligible radiation doses], and 26,000 unexposed residents) and approximately 
77,000 children born between 1946 and 1984 with at least one parent who was exposed 
([65], reviewed in [54, 60]). It was assumed that the LSS cohort included approximately 50% 
of survivors who were alive five years after the bombings ([66], reviewed in [54]).

The 1986 report on atomic bomb radiation dosimetry in Hiroshima and Nagasaki (in 
regard to the dosimetry system DS86) raised concerns about the calculated and measured 
values of thermal neutron activation of cobalt-60 (60Co), particularly because it was assumed 
that the neutron dosages were underestimated in this study ([67, 68], reviewed in [69]). The 
new dosimetry system, DS02, suggested improving the dosimetry estimates at the Radiation 
Effects Research Foundation (RERF) by using tools such as the Geographical Information 
System (GIS) which resulted in 5% to 10% reductions of house and body shielding 
transmission factors for neutrons.

Linear No-Threshold (LNT) Model

The LNT model assumes that any amount of radiation has a detrimental effect in terms of 
mental health, genetic effects, and cancer, i.e. a zero-threshold assumption or put differently, 
that there is no radiation dose that is without an incremental quantifiable increase in cancer 
risk. Some have attempted to use this model to establish regulatory dose limits (Nuclear 
Regulatory Commission, NRC) although the model has not been verified as predictive (Fig. 
1a and 1b). Furthermore, the LNT model is used to assess non-stochastic (deterministic) 
effects, but in actuality no response is seen until a threshold dose is exceeded. Contradictory 
findings have been observed in one of the most important cases of manipulated data in 
science, which gave rise to the dogma of the LNT model in the first instance [60, 70-73] 
and the LNT subsequently led to another dogma, the Somatic Mutation Theory or SMT used 
to explain the critical element in carcinogenesis [11]. An exploration of the data illustrates 

Table 2. Atomic bombs detonated at Hiroshima and 
Nagasaki [34, 55, 61, 63]

 

 

– –
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how the LNT and the later, the SMT, achieved widespread acceptance in the absence of 
strong supporting data (see also Supplementary Material, Section ‘nuclear fission and atom 
splitting’).

Herman Joseph Muller (1890–1967) irradiated Drosophila melanogaster (fruit flies) 
and observed lethal mutations within the F2 generation (88 lethal mutations in 758 cultures 
versus 1 lethal mutation in 947 cultures in the control group). However, in the F4 generation, 
hardly any mutations were observed [74-77]. Muller received the Nobel Prize in Physiology 
or Medicine in 1946. At that time, the atomic bombs had recently been detonated, and fears 
regarding radiation were substantial leading to the LNT model. Edward Butts Lewis (1918–
2004), Professor of Biology at the University of California, San Francisco, supported the linear, 
no-threshold hypothesis as a model for radiation protection standards and afterwards the 
committee endorsed the LNT during the hearings of the Joint Committee on Atomic Energy 
Hearings at the end of the 50s, [78].

Science published an anonymous article in 1956 with the following conclusion: “The 
basic fact is - and no competent persons doubt this - that radiations produce mutations and 
that mutations are in general harmful…..We ought to keep all of our expenditures of radiation 
as low as possible….From the point of view of genetics, they are all bad” [79]. This statement 
was reported on the front page of the New York Times in an article entitled “Scientists term 
radiation a peril to future man” with the subtitle “Even small dose can prove harmful to 
descendants of victim, report states” [80], reporting on the LNT model. In 1957, Edward Butts 
Lewis (1918–2004), published observations that radiation caused leukemia in Science, [81] 
and he received the Nobel Prize in Physiology and Medicine in 1955 for his contribution 
to evolutionary developmental biology. Criticized by scientists [73], Lewis’ leukemia paper 
reported on heritable effects based on the LNT model and cancer induction in terms of the 
SMT. The SMT has been previously subjected to an exhaustive review [11].

The situation became worse over time, with the NAS Radiation Committee still 
promoting the LNT model as recently as in 2006 [34]: “LNT has also been applied to chemical 
carcinogens: the smallest amount of a carcinogen is hazardous without a threshold for positive 
excess risk” [72] (see also Supplementary Material, Section ‘radiation in living organism’).

The LNT and the SMT are based on models, not data, and have had unbelievable 
consequences for cancer research and oncology for the past 70+ years in that (1) use of a 
false radiation exposure model (LNT) resulted in “the road to linearity” (in regard to [73], 
and (2) a complete scientific molecular branch (carcinogenesis) was directed on the wrong 
path with the SMT being touted as the basis for the majority of cancers [11].

When the International Congress of Radiology was held in 1925 in London, an International 
X-ray Unit Committee was founded. The Second Congress in Stockholm, Sweden, took place 
in 1928, named the International X-ray and Radium Protection Committee (IXRPC). This 

Fig. 1. Radioactivity and cancer 
risk (effect) models. (A) Linear no-
threshold model with the assump-
tion that that any amount of radia-
tion has some detrimental genetic 
effects in the form of DNA damage 
that could then lead to cancer, i.e. a 
zero-threshold assumption or that 
there is no radiation dose that is 
without an incremental quantifi-
able increase in cancer risk. (B) 
Non-linear model: this model ap-
plies to non-stochastic (determin-
istic) effects: no response is seen until a threshold dose is exceeded. In this model non-stochastic effects are 
postulated and in this model, a defined minimum dose must be exceeded before the effect (diseases) occurs.
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meeting was followed by meetings in Paris (1931), Zurich (1934), and Chicago (1937). In 
1950, the organization was named the International Commission on Radiological Protection 
(ICRP) (reviewed in [82-84]). In that year, the ICRP indicated “the dose limit from tolerance 
dose to maximum permissible dose.” There are now multiple societies and committees that 
determine radiation protection policies, such as the United Nations Scientific Committee 
on the Effects of Atomic Radiation (UNSCEAR) and the Committee on the Biological Effects 
of Ionizing Radiation (BEIR) of the National Research Council (NRC) of the United States. 
UNSCEAR and BEIR suggest ICRP recommendations to regional committees/institutions, 
such as the World Health Organization (WHO) and the IAEA, and industries, which result in 
national regulations (Fig. 1, reviewed in [84] - not provided here).

In 1950, the ICRP was not in the position of making firm recommendations regarding 
the maximum permissible amounts of radioactive isotopes [85, 86]; however, the committee 
recommended 300–600 mrem per week for skin, blood, gonads, and eyes in 1954 [87] and 
as a genetic dose in 1958 [88]. In 1956, the National Academy of Sciences (NAS), which is 
the highest scientific authority in the U.S., with its ‘The Biological Effects of Atomic Radiation 
(BEAR) committee’ adopted and wrongly recommended the LNT on 12 June ([89], reviewed 
in [73, 90]). According to the LNT, even the smallest amount of radiation is hazardous to 
human health. However, the LNT model is not based on solid data, but is instead a product 
of mathematical assumptions resulting in considerable uncertainty. If the LSS data had not 
been underestimated, the cancer risk would not have been overestimated. Currently, it is 
clear that the actual human data published in the LSS does not support the LNT model.

Today, we know that an ideologically driven decision based on unverified assumptions 
resulted in the genesis of the LNT. In 1977, the ICRP stated [91] that the induction of malignant 
tumors was a major risk based on the LNT model in terms of the SMT for carcinogenesis. 
In 1990, the Committee declared that even small radiation doses may produce deleterious 
health effects, as DNA changes would result in mutations and consequently cancer (reviewed 
in [82]), completely ignoring the role of DNA repair enzyme systems. However, their report 
stated that “the extent to which these diseases would increase with a given increase in the 
mutation rate have for the most part not been demonstrated directly in any organism” [91], an 
important caveat that has been ignored to date.

Another mistake was when rodent (mouse) studies were directly extrapolated and 
applied (1:1) to humans. We know that mouse studies cannot be automatically extrapolated 
to humans, especially if such investigations have not been performed for ages comparable to 
those of humans in terms of signaling pathways (Table 3) (adapted from [92]). In addition 
to the need to identify signaling pathways, although mice are the most commonly used 
animal model in cancer research, data reproducibility 
from these studies enables <8% of mice data to be 
successfully extrapolated from animal models to clinical 
cancer trials [93]. Mouse models are also primarily used 
because of the inherent genetic mutability in mice.

Only germline mutations can pass on characteristics 
(positive or negative) to the progeny. However, somatic 
mutations are those genetic changes that occur in non-
germline cells and, in addition to not being passed 
down to progeny, also do not adequately describe the 
majority of cancers as is widely perceived (see also 
Supplementary Material, Table 1). Furthermore, we 
know that gene functions change in response to their 
environment [11, 15]. Epigenetics is the study of this 
phenomenon, where environmental factors determine 
whether a gene is activated (with subsequent effects on 
proteins/RNA) or whether a gene remains unactivated 
during a defined time. In experiments, genes are fixed 
(by a rigid definition) in a certain direction to elucidate 

Table 3. Age equivalents in mice and 
humans and representative age ranges 
(adapted from [92])
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parts of their function or study interactions. Rather, in biology, genes over multiple generations 
are responsible in for an organism’s ability to adapting to changes in its environment. Recent 
developments in cancer biology support a strong role for the tumor microenvironment and 
stroma in determining tumor progression [9, 94, 95].

It has been stated that “some somatic effects are stochastic; of these, carcinogenesis is 
considered to be the chief somatic risk of irradiation at low doses and therefore the main 
problem in radiation protection” [91]. In 1998, studies on genetic susceptibility to cancer 
were part of the official IRCP mission [96], suggesting that the ICRP directly supported and 
promoted the SMT. These studies were primarily based on mice or cell lines in vitro, such 
as investigations of p53 mutation accumulation in organs of mice irradiated with low-dose 
X-rays [97, 98].

Today, experiments still produce inconclusive results with equivocal evidence [93]; thus, 
it is no accident that UNSCEAR stated in 2012: “the Scientific Committee does not recommend 
multiplying very low doses by large numbers of individuals to estimate numbers of radiation-
induced health effects within a population exposed to incremental doses at levels equivalent 
to or lower than natural background levels” [99]. Also, it is believed that radiation may be 
influenced by the presence of reactive oxygen species (ROS) and other free radicals [100]. 
This viewpoint is quite interesting as the cell nucleus is almost anoxic and approximately 
90% of oxidation in the cell occurs inside the mitochondria [101], thus the short-lived free 
radicals would not be proximate to where the DNA resides inside the nucleus of the cell.

Researchers have sought to establish radiation-induced histone modifications [102-
105] as an alternative mechanism to yield double-stranded DNA breaks (dsDNA). In this 
respect, three observations may be relevant: (1) the anthracycline drug, doxorubicin, 
induces substantial epigenetic changes in cultured cardiomyocytes in vitro with histone-3 
acetylation [106]; (2) Histone modifications are mediated independently of ROS [99]; and 
(3) ionizing radiation induces locus-specific changes to histone modification enrichment 
in zebrafish and Atlantic salmon in generation F1, but not in subsequent generations 
[107]. Thus, changes in histone modifications in the investigated targets were not retained 
in a multi-transgenerational effects, in contrast to histone modifications that persist in 
transgenerational memory over 14 generations in Caenorhabditis elegans [108]. For this 
species, it has been shown that “Exposure to high temperatures [in Caenorhabditis elegans] 
led to expression of endogenously repressed copies of genes—sometimes called “junk” DNA,” 
which “persisted for >10 generations of worms.” The relevance of such findings cannot be 
extrapolated to humans, based on available data.

Although studies in cell lines and mice can be valuable, the reality is shown by clinical 
observations, which are too often underestimated. Out of 10,929 solid-cancer deaths within 
the LSS, only 527 (4.8%) were radiation-related ([109], reviewed in Table 4311 in [110]).

A 10-year follow-up of 1,292 children exposed in utero to radiation from atomic bombs in 
Hiroshima and Nagasaki showed no increase in malignant cancers [111], which is consistent 
with other reports [112]. No significant differences in mutation rates at microsatellite loci 
were reported, with an estimated mean mutation rate of 0.39 x 10-2 in the exposed group [(7 
+ 4)/2,789)] compared to 0.35 x 10-2 in the control group [113, 114], and which contradicts 
other reports [115]. However, in utero exposure to radiation seems to be considerably lower 
than early childhood exposure [116]. As discussed below, data from the Chernobyl nuclear 
plant accident affirms this phenomenon.

Chernobyl nuclear power plant accident

The 1986 Chernobyl nuclear power plant accident is the most serious radiation 
exposure accident since WWII [41]. However, there is no scientific evidence to indicate that 
this accident increased the overall cancer incidence over that of the general United States 
population with regard to thyroid cancer: “National trends in cancer incidence rates for the 
nation of Ukraine are comparable to those observed in its neighbor country, Belarus, and are 
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mostly comparable to those of the United States.” Moreover, the “...calculated average annual 
percent change for thyroid cancer incidence rates in the nation of Ukraine from 1999 to 2016 
was 4.2%, which was not particularly different from the 3% to 4% observed in the United States 
Surveillance Epidemiology and End Results (SEER) registry over a similar time interval” [117].

Most recently it was shown by whole-genome sequencing of 130 children, born between 
1987-2002 to parents exposed to ionizing radiation from the 1986 Chernobyl disaster, that 
“…no elevation in total germline de novo mutations regardless of cumulative preconception 
gonadal paternal (mean = 365 mGy, range = 0-4,080 mGy) or maternal (mean = 19 mGy, range 
= 0-550 mGy) exposure to ionizing radiation” was observed [118].

The question, scientists need to pose is “Why are no trans-generational effects observed 
after ionizing radiation, especially as this is still being promoted as the so-called prime example 
for initiating carcinogenesis?”

Evaluation of the LNT model

Overall, radiation health effects (excluding physical/heat from the blasts) were due to 
γ-rays and neutron radiation from the atomic bomb blasts, for which dosages could be re-
constructed based on the distance from the hypocenter.

It has long been believed that there exists a linear dose–response relationship between 
health effects and radiation exposure (dose). This belief is based on findings in Escherichia 
coli and D. melanogaster [75, 119-123], although it is also known that “the time rate of 
mutation varies greatly among different types of normal cells, representing different stages 
in the germinal cycle” [121]. Thus, several factors influence the results. “The results from 
Drosophila and from Tradescantia demonstrate that in the low-dose range, neutrons are much 
more efficient in the production of two-break chromosome aberrations than X- and γ-rays” 
[124].

Linear energy transfer (LET)

A small fraction of the dose absorbed by the Japanese atomic bomb survivors was due 
not to γ-rays but to fast neutrons. Directly ionizing particles are charged particles such as 
high-energy electrons, protons, α-particles, or fast heavy ions [34]. Indirect ionization occurs 
by uncharged rays, such as X- or γ-rays, which include fast neutrons.

LET is defined as the average energy lost by a particle due to electronic interactions 
per unit length along its trajectory, expressed in kiloelectronvolts per micrometer (keV/
mm). High-energy electromagnetic radiation, such as X- or γ-rays is rarely ionized because in 
tissue it releases fast electrons with a low LET. The major energy transfers result from the 
photoelectric process, Compton scattering, and pair production. In tissues, the photoelectric 
process dominates at low energies (< 0.1 MeV), and most of the photon’s energy is imparted 
to the ejected electron as kinetic energy. At intermediate photon energies (0.5–3.5 MeV), 
Compton scattering is the most probable event, and the energy of the incoming photon is 
converted into the kinetic energy of an electron and a second (“scattered”) photon (with less 
energy). Pair production can occur at energies greater than 1.02 MeV. In this case, the photon 
energy is converted into a positron and electron after the radiation interacts with the atomic 
nucleus, and in turn, other molecules can be ionized.

The overall fraction of dose absorbed by atomic bomb survivors due to neutrons was 
small, approximately 2% in Hiroshima and 0.7% in Nagasaki ([125], reviewed in [34]). Here, 
it is important to note that small neutron doses can have large effects. Neutron energies reach 
up to millions of electron volts, which is higher than the energy of protons. Thus, high local 
concentrations produce far more clusters of ionization than low-LET photons, and result in 
more DNA damage [34]. The resulting recoil protons produce the maximum cellular damage 
per unit energy imparted ([126], reviewed in [34]).
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The relative biological effectiveness (RBE) is the ratio of biological effectiveness of one 
type of ionizing radiation to another. The RBE of neutrons is about 12 compared to a γ-ray 
dose of 1 Gy (reviewed in [34]) (see also Supplementary Material, Section ‘radiation in living 
organism’). Using rats, Boerse and Gerber showed that 4 mGy of fast neutrons produced as 
many mammary neoplasms as 0.4 Gy of X-rays, implying an RBE of 100 ([127], reviewed in 
[34]). The experiments by Wolf in 2000 showed that a neutron dose of 20 mGy in Sprague–
Dawley rats was equivalent to an acute 1-Gy X-ray dose, meaning that the neutron RBE is 50 
versus a value of 1 for X-rays [128]. Approximately 70-80% of low-energy radiation-DNA 
interactions do not result in dsDNA breakages, a necessity to make DNA repair systems 
ineffective as there is no template to repair the damaged DNA. The more typical low-energy 
radiation-DNA interaction that results in DNA damage is primarily single-stranded DNA 
breaks (ssDNA), with only 0.5%–1.4% observed as dsDNA [129, 130] and these ssDNA are 
easily repaired as there is an intact strand to use as a template by the repair mechanisms 
[131-133]. However, dsDNA are believed to contribute to radiation-induced cancers. This 
assumption is also based on investigations in cell lines in vitro (reviewed in [134, 135]). 
However, as discussed, the reality in humans is different as only some 4.8% of solid-cancer 
deaths were causally shown to be radiation-related [109].

The Nagasaki atomic bomb produced low-LET radiation, resulting in a large number of 
ssDNA and consequently showed an S-shaped dose–response for leukemia. This is because 
DNA repair enzymes can use the intact strand as a template to repair the ssDNA damage as 
discussed above. Similar findings have been reported for most non-carcinogenic chemicals 
and/or pharmaceuticals (reviewed in [135, 136]).

Thus, agents that primarily produce dsDNA breaks are more relevant because repair 
enzymes have no template for repairing the damaged DNA [137] as occurred with the high 
LET radiation from the atomic bomb dropped on Hiroshima unless one has defective DNA 
repair enzymes. Such a condition occurs in children with the rare autosomal recessive 
condition, Xeroderma pigmentosum [11, 26, 138, 139].

It has long been known that many variables influence radiation resistance, such as 
age [140-143], gender [144, 145], and environment [146-148]. It was shown in 1937 that 
neutrons are approximately 5- to 6-fold more effective in inducing mutations than X-rays, 
which was confirmed in 1964 [149-151]. These findings led to the expectation that a dose–
response effect would be found for neutrons [150].

Linear energy transfer (LET) and its effects

The above discussion explains why the dose–
response curves differ in high- and low-LET 
radiation exposures and for acute versus chronic 
exposure. High-LET curves are typical for fissile 
reactions while low-LET curves are typical for 
X-rays, γ-rays, and tritium β-rays, as shown in 
Fig. 2. In this figure, the dashed curves for chronic 
exposure differ in both cases (high- versus low-
LET) compared with single acute exposures. This 
figure was modified from the original presented 
by Straume and Carsten (1993) [152], which 
was based on earlier publications [153-163]. 
Only agents capable of dsDNA breakage become 
clinically relevant unless one has defective DNA 
repair enzymes, e.g. as in children with Xeroderma 
pigmentosum.

Fig. 2. Linear energy transfer (LET) and its 
effects. Observed differences in acute versus 
chronic effects for high versus low LET [this 
figure was modified from 152-163].
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Somatic mutation theory (SMT)

As a result of the mathematically constructed but data-deficient LNT, the SMT grew 
in popularity to become the prime explanation for how the majority of cancers begin. 
Researchers have consistently tried to force fit the SMT, which holds true for only a minority 
of cancers by applying various changes and modifications [164, 165], such as introducing the 
concepts of driver and passenger mutations [166] and the hypermutation theory [167]. The 
so-called ‘bad luck’ paper was the latest such attempt to generate a mathematical explanation 
for the occurrence of carcinogenesis and it was based on the theory that somatic mutations 
cause cancer with a constant risk for a given number of cell divisions [168]. Furthermore, 
the statement that 66% of cancers would be explained by the SMT [168] was proven to be 
incorrect [169]. As the SMT can only be applied for some 5 to 10% of cancers, it is obvious 
that this is an untenable model that cannot be applied to explain the majority of cancers. 
Here, it is helpful to read the primary literature beyond the original papers [170-172] and 
none of the above papers cited the original publications.

Findings were simply combined into one box, reflecting biased thinking, without 
acknowledging the known significant differences between animal or cell line experiments 
and humans. It is known that the expression levels and composition of DNA repair genes 
differ considerably between humans and mice ([173, 174] reviewed in [175]). The same 
group investigated germline and somatic mutation rates in humans and mice [175]. Detecting 
mutations is not as easy as one may think. Germline mutations can be observed in all somatic 
cells, while post-zygotic somatic mutations are measurable only if a large fraction of the cell 
population is sampled. Thus, measured somatic mutations do not provide a direct estimate 
of the actual somatic mutation rate. Somatic mutation frequencies in single cells are based on 
investigating reporter loci whereas surrogate genes “cannot be considered as representative 
for the genome overall” [175] as “the high error rate of current high-throughput sequencing 
platforms (0.1%–1%) effectively masks low-abundance mutations” [176].

To overcome this challenge, the identification of clonally amplified mutations in most 
cells might provide more reliable results; however, this approach requires that one finds the 
same mutation in multiple independent reads from the same gene locus. Thus, whole genome 
amplification (WGA) has been suggested as a more accurate approach. When a reference 
sequence is aligned, “mutations are detected as differences between the amplified single-cell 
genomic DNA and the reference sequence normalized to the non-amplified genomic DNA of the 
mother cell population” [177]. Gundry et al. suggested sequencing the genomes of multiple 
single cells from D. melanogaster (S2 cells) and mouse embryonic cells (mouse embryonic 
fibroblasts, MEF), after treatment with the mutagen N-ethyl-N-nitrosourea to estimate the 
agent’s mutagenicity. It has been stated that this approach could provide “a direct measure of 
exposure to mutagenic agents and for assessing genotypic heterogeneity within tissues or cell 
populations”, but not much in this regard has been published.

Somatic mutation frequency “cannot be determined by sequencing total genomic DNA 
due to the very low abundance of such mutations, which are unique to individual cells” [175]. 
The frequencies of germline and somatic mutations in humans and mice are different: after 
adjusting for the number of mitosis cycles, a median germline mutation rate of 1.2 x 10-8 
mutations per base pair (bp) per mitosis was calculated for humans, with a value of 5.7 x 
10-9 mutations per bp for mice. As these differ significantly, findings in mice cannot easily 
be transferred 1:1 to humans in this regard. Furthermore, the mass of mutations have very 
small effects [178]. To fully elucidate radiation effects, we must explore radiation effects in 
living organisms in greater detail.
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Radiation effects

The effects of radiation include damaging changes in the bases and polynucleotide chains 
of DNA as single- and double-stranded breaks. This damage is influenced by many variables. 
Cells in the mitotic and G2 phases are the most sensitive, while cells in the S phase are the 
most radiation-resistant. The tissue of origin influences the results, as rapidly proliferating 
cells such as those from the skin mucosa or bone marrow reveal effects within a few weeks 
while slow or non-proliferating tissues such as nerves, muscles, and bones can reveal 
adverse effects months or years post-exposure [179-181]. Knowledge of embryogenesis and 
fetogenesis, as well as the process of differentiation of the three germ layers into various 
tissues, is required to understand the different effects of radiation (see Supplementary 
Material, Table 1, and for further details see also Supplementary Material, Section ‘radiation 
in living organism’).

Franklin Paine Mall (1862–1917) attempted to classify embryology in 1914 [182-184] 
and founded the “Carnegie Collection” in 1887 (officially announced in 1902) (see also 
Supplementary Material, sections ‘radiation in living organism’ and ‘development during 
embryology’). Approximate Carnegie stages are delineated based on the development 
of structures in mice and rats according to Nishimura [185] based on Streeter [186-189], 
Nishimura [190, 191], Olivier and Pineau [192], Iffy [193], Jirásek [194], and O’Rahilly and 
Müller [195]. These stages were also reviewed in Yamada [196] and in terms of various 
irradiation dates in regard to rats [197-199] and mice [200, 201] (Fig. 3).

LD50/30
According to the United States Nuclear Regulatory Commission (USNRC), a radiation 

dose of 4–5 Sv is expected to cause death in 50% of an exposed population within 30 
days (lethal dose [LD] 50/30) [202]. By comparison, flight attendants are subjected to an 
annual dose of 1.5–1.7 mSv [203], and a chest X-ray, mammogram, and a single abdominal 
computed tomography scan corresponds to an exposure of 0.1 mSv (range: 0.05–0.24), 0.4 
mSv (range: 0.1–0.6), and 8 mSv (range: 3.5–25) [204]. Although an increase in some cancers 
have been reported in flight crews compared to the general population, the results should be 
interpreted in light of self-reported health information and a cross-sectional study design. A 
more equivocal finding was reported in Swedish cabin crews [205].

The total-body lethal radiation dose that causes death in 50% of individuals (LD50) is 
about 3–4 Gy [206, 207].

Time of radiation exposure
Many variables influence radiation-induced cancer risk, such as direct dose-time 

exposure/ radiation fallout/ingestion, time of exposure (prenatal, postnatal, or early 
childhood, late life), and time of prenatal exposure (embryogenesis or fetogenesis) (see 
also Supplementary Material, section ‘radiation in living organism’). These factors may 
explain some of the contradictory findings regarding decreased cancer risk for the majority 
of Japanese atomic bomb survivors in comparison to ongoing excessive thyroid cancer 
risk associated with childhood exposure to radiation [116, 208]. Observations of varying 
cancer incidences during the pre-implantation period versus in utero irradiation during 
embryogenesis (blastogenesis versus organogenesis) versus fetogenesis were reviewed by 
Lena Einhorn in 1991 (reviewed in [209]). The Zeitgeist culture of most of discoveries as 
well as important content to take into account are enabled in the Supplementary Material, 
section ‘Time in context European Vision’.
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Conclusion

Only some 5 to 10% of cancers are proven to be caused by mutations. The continuous 
use of radiation as the origins of mutation-induced cancer is not valid as discussed for the 
majority of cancers. These erroneous inferences are all redicated on the LNT and SMT 
models as detailed above. From a scientific point of view, we should ask “Why are no trans-
generational effects observed after ionizing radiation, especially as this is still being promoted 
as the so-called prime example for carcinogenesis?” The cancer paradigm “Epistemology of 
the origin of cancer” with its sex-step process for carcinogenesis includes signaling, as well 
as anti- and pro-inflammatory regulatory mediators or mechanotransduction, precancerous 
niche and cell transition that together enable a deeper understanding of the mistakes and 
incongruity in events that lead up to the development of cancers. Since 2019, the literature 
supporting this paradigm is being published with some regularity [210-249]. By this, both 
the essential principles of physics and the cancer paradigm provide insights to the puzzle 
of carcinogenesis and serve as an impetus to further critical thinking and analyses. The 
outcome could be new concepts and cognition in science for mankind and especially for 
cancer patients.
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