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Abstract
This minireview discusses the very important biomedical problem of treating type 2 diabetes 
mellitus (T2D). T2D accounts for more than 90% of the total number of diagnosed cases of 
diabetes mellitus and can result from aging, inflammation, obesity and β-cell senescence. 
The main symptom of both T2D and type 1 diabetes (T1D) is an increase in blood glucose 
concentration. While T1D is insulin-dependent and is associated with the destruction of 
pancreatic β-cells, T2D does not require lifelong insulin administration. In this case, pancreatic 
β-cells are not destroyed, but their functional activity is deregulated. In T2D, metabolic stress 
increases the number of senescent β-cells while impairing glucose tolerance. The potential 
paracrine effects of senescent β-cells highlight the importance of the β-cell senescence- 
associated secretory phenotype (SASP) in driving metabolic dysfunction. We believe that the 
main reason for the deregulation of the functional activity of pancreatic β-cells in T2D is 
associated with their “aging” or senescence, which may be induced by various stressors. We 
propose the use of peroxiredoxin 6 as a new senolytic drug, and the role of β-cell senescence 
in the development of T2D is discussed in this review.

Introduction

Epidemiological studies of diabetes mellitus are regularly conducted by the World 
Health Organization (WHO) and the International Diabetes Federation (IDF). In 1998, 
investigators predicted that the number of people with type 1 and type 2 diabetes would 
increase from 135 million in 1995 to 300 million by 2025 [1]. At the end of 2019, IDF data 
were published, indicating that 453 million people had type 1 and type 2 diabetes in the 
world in 2019; according to forecasts, this number will reach 700 million in 2045. Indeed, 
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all researchers have noted the trend of annual increases in diagnosed diabetes mellitus 
cases. Importantly, not all diabetes cases are diagnosed. Diabetes-related death statistics 
are especially dramatic. According to IDF data, among all people worldwide who died in 
the age range of 20 to 79 years in 2019, 4.2 million died of diabetes, i.e., one in 12 deaths 
from all diseases was associated with diabetes [2]. More than one-third of the world’s 
population is overweight or obese and therefore at risk of developing type 2 diabetes. To 
mitigate the effects of this pandemic, safer and more effective therapeutics are urgently 
needed. This resolution requires the use of animal models to discover, validate and optimize 
new therapeutics for safe use in humans [3]. Type 2 diabetes mellitus, characterized by 
insulin resistance, hyperglycemia, and hyperlipidemia, is known to be a complex metabolic 
disorder [4]. Insulin release from pancreatic β-cells is essential for maintaining normal 
glucose homeostasis in humans and animals. Abnormal insulin secretion underlies all forms 
of diabetes mellitus, a disease that is now reaching epidemic proportions throughout the 
world. Since insulin-producing pancreatic β-cells are the main target in both type 1 and type 
2 diabetes mellitus [5], research is being conducted around the world to find approaches 
to reduce the destruction of pancreatic β-cells or even to stimulate their differentiation 
[6]. There are known markers for type 1 diabetes (for example, the presence of pancreatic 
autoantibodies in the blood), but the diagnosis of type 2 diabetes (T2D), which, like type 1 
diabetes (T1D), is characterized by hyperglycemia, is still very difficult, and the exclusion of 
a T1D diagnosis is almost always used. The most significant difference between these two 
forms of diabetes is that T1D is characterized by the destruction of pancreatic β-cells, while 
T2D is characterized by a decrease in their functional activity [7], expressed as a loss of 
their secretory function and a decrease in the mass of β-cells [8]. Hyperglycemia leads to the 
production of reactive oxygen species (ROS) and reduces the effectiveness of the endogenous 
antioxidant defense system in diabetes mellitus [9]. Antioxidant defense mechanisms 
include both enzymatic and nonenzymatic systems. There is strong evidence for oxidative 
stress both in type 1 and type 2 diabetes [10-12]. At the same time, an increase in the 
production of reactive oxygen or nitrogen species increases the consumption of endogenous 
antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase) and 
reduces the concentration of some low-molecular-weight antioxidants, such as vitamin D 
[13]. A decrease in the activity of peroxiredoxins under conditions of oxidative and carbonyl 
stress may be an important factor triggering the molecular mechanisms of damage to the 
vascular wall in atherosclerosis and diabetes mellitus [14]. The particular combinations of 
β-cell defects, ultimately inducing T2D, may differ between individuals and include variations 
in the development of β-cell mass, β-cell expansion, responses to ER stress and oxidative 
stress, insulin production and secretion, and intracellular changes in signaling pathways. 
Because some β-cells survive in the toxic environment in T2D but remain in an altered state 
of differentiation, strategies to revive these cells and rejuvenate their functions are needed 
[7]. We believe that it is necessary to identify mechanisms that stimulate β-cell proliferation 
or promote β-cell survival and use them to develop new therapeutic agents for the treatment 
of T2D. An important aspect of the development of T2D is aging and excess weight (obesity). 
Indeed, T2D may be considered an age-related disease [15]. Although changes in aged 
β-cell function and proliferation should affect insulin secretion, the contribution of β-cell 
senescence remains unclear. Insulin resistance has been found to accelerate β-cell aging, 
leading to loss of function and cellular identity and a worsening metabolic profile. Senolysis 
(removal of senescent cells) using senolytics was shown to improve glucose metabolism and 
β-cell function while reducing the expression of aging markers [16]. Thus, type 2 diabetes 
is an age-related disease characterized by a decrease in the mass and functional activity 
of β-cells, leading to an inability to compensate for the high demand for insulin in insulin-
resistant states [17]. However, the role of senescence in relation to pancreatic β-cells is 
poorly understood, and there are no methods targeting the age-related aspect of the disease. 
β-Cells can compensate for increased metabolic demands by increasing insulin secretion, 
thus restraining hyperglycemia. This compensation may be limited by the age-related 
decline in β-cell proliferation, as shown in rodents [18] and humans [19]. This deficit in 
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the proliferative response to increased demand may in part arise from the accumulation of 
senescent β-cells. Thus, with age, the accumulation of dysfunctional senescent β-cells likely 
contributes to impaired glucose tolerance and diabetes mellitus. However, the particular 
roles of β-cell senescence in the development of type 2 diabetes and the importance of β-cell 
senolysis as a potential therapy for suppressing T2D progression require more detailed 
discussion.

Chronic Inflammation as a Forerunner of Type 2 Diabetes

Inflammation primarily serves to restore homeostasis when the body is invaded by 
foreign pathogens or after trauma; if inflammation is limited, it plays a protective role 
in adaptation. In contrast, chronic inflammation may be a pathological condition that 
contributes to the development of various concomitant diseases. Indeed, chronic low-
grade inflammation caused by metabolic stress due to constant nutrient overload leads to 
obesity, atherosclerosis, and T2D [20-22]. Many published studies have indicated immune 
involvement in the regulation of the consequences of metabolic inflammation. For example, 
macrophages play a role in pancreatic development [23, 24]. T2D is a chronic progressive 
disease associated with obesity and insulin resistance. The onset of T2D is primarily 
determined by the progressive inability of pancreatic β-cells to secrete enough insulin to 
maintain normoglycemia [25]. Many preclinical and clinical studies have shown a causal 
relationship between sterile low-grade inflammation and metabolic diseases, including T2D 
[20, 26-28]. Acute inflammation in response to pathogens and irritants usually begins at the 
site of injury and involves leukocytes, followed by a cellular phase dominated by granulocytes. 
In contrast, chronic inflammation in metabolic diseases and obesity does not involve an acute 
immunovascular response and mainly recruits mononuclear cells. In this case, a significant 
increase in proinflammatory cytokines and chemokines is usually observed in all tissues and 
organs, including pancreatic islets. In islets, the activation of the innate immune system may 
contribute to a decrease in β-cell mass and function [29, 30]. This activation is characterized 
by an increase in innate immune responses and the accumulation of inflammatory mediators. 
Before the first reports showing toxic effects of glucose on human pancreatic islets [31], 
a study using the diabetes-prone gerbil Psammomys obesus showed that hyperglycemia 
was associated with islet destruction in vivo [32]. Subsequently, glucose, fatty acids, and 
Toll-like receptor (TLR) agonists were shown to induce the expression of chemokines and 
proinflammatory cytokines in mouse islet cells [33-38]. The main function of β-cells is to 
produce and secrete insulin in response to metabolic demands. Importantly, β-cells have 
a highly developed endoplasmic reticulum (ER), where proinsulin is properly folded [39]. 
However, the prolonged high demand observed in the prediabetic state can lead to ER stress 
and subsequent inflammation [40]. In addition, local resident macrophages have been shown 
to respond to β-cell activity 
(actually, to ATP cosecreted 
with insulin by β-cells), leading 
to macrophage activation and 
an inflammatory response 
[41]. In addition, IL-1 receptor 
signaling has been shown to be 
an important part of metabolic 
syndrome [42, 43]. Thus, it 
has now been established that 
insulitis represents a partial 
decrease in the number and 
activity of mononuclear cells 
and an increase in the level 
of proinflammatory factors, 
leading to the development of 
T2D (Fig. 1).

Fig. 1. The effects of inflammation, oxidative stress, and ER stress 
on β-cell senescence.
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In addition, in studies of the IL-1 system in humans and rodents, the IL-1 system was 
shown to induce islet inflammation [31], which could be reduced using an IL-1 antagonist 
[44, 45]. However, many questions still need to be addressed in future studies, particularly to 
what extent anti-inflammatory treatments for T2D can be clinically implemented.

Β-Cell Aging and Type 2 Diabetes

Cell senescence is a condition in which cells stop dividing but remain metabolically 
active with an altered phenotype [46]. There are no universal markers of aging, and known 
markers do not match in different aging tissues. Senescent cells are related to many age-
related diseases [47, 48]. There are several mechanisms underlying both natural and 
accelerated aging, both of which can manifest in age-related diseases; as such, “aging” and 
“age-related disease” can be seen as indistinguishable processes [49]. “Natural aging” usually 
refers to the gradual decline in biological functions throughout the whole life of an organism, 
while accelerated aging is likely associated with the same processes but runs at a faster rate 
due to additional stresses. For example, smoking, exposure to toxins, chemotherapy, a high-
fat diet, and infectious diseases can all cause accelerated cell aging. Accelerated aging often 
affects particular tissues and organs rather than the body as a whole. For example, chronic 
obstructive pulmonary disease (COPD) caused by smoking is likely a result of accelerated 
lung aging caused by cigarette smoke [50]. The senescence of cells can potentially lead to 
biological dysfunction due to their inability to proliferate, the secretion of proinflammatory 
factors, a negative impact on neighboring cells, and protease-mediated degradation of 
extracellular components [15, 51]. Cell turnover is vital for replacing damaged cells, and it 
occurs throughout the life of an organism. Thus, permanently stopping senescent cells 
reduces the capability of tissue to regenerate. Such a decline in the regenerative capacity will 
affect both the growth of competent somatic tissues and post-mitotic tissues that depend on 
these growth-competent cells to maintain their normal state. Since pancreatic β-cells play an 
essential role in insulin production [52], it is not surprising that the dysfunction of these 
cells makes a major contribution to the pathogenesis of type 2 diabetes. Pancreatic islet cell 
dysfunction leading to impaired insulin secretion may be associated with a range of factors, 
including chronic inflammation, autoimmunity, oxidative stress, and ER stress [53]. It is 
known that inflammatory factors, such as cytokines, can also increase the senescence of 
neighboring cells [54]. Importantly, senescent cells are proinflammatory, lead to an immune 
response, demonstrate an increased level of ROS, and in some cases are capable of causing 
ER stress [47]. One of the pioneering studies indicating that pancreatic β-cell senescence 
may play a role as an underlying cause of type 2 diabetes was conducted using a high-fat diet 
in mice [55]. In this study, after 12 months of a high-fat diet, the proportion of β-cells 
determined by Ki67 staining was reduced by one-third compared to that of controls, while 
the proportion of cells positively stained with SA-beta-Gal increased strongly, indicating an 
increase in the proportion of senescent β-cells. The partial reversibility of β-cell senescence 
[56] suggests that this is a nonbinary phenomenon. External adverse factors may stimulate 
the induction of a subpopulation of senescent β-cells, while the gradual increase in the 
number of damaged β-cells likely accelerates the development of T2D. Ultimately, the 
accumulation of senescent β-cells may exceed the threshold, causing long-term metabolic 
dysfunction due to permanent loss of β-cell mass and function. Deletion of senescent β-cells 
or the reversal of senescence in a whole subpopulation of β-cells may interrupt this cascade 
of dysfunctions [57]. To use these therapeutic strategies, it is necessary to characterize the 
various subpopulations of senescent β-cells and the temporal patterns of the expression of 
senescence-associated genes. These experiments will also elucidate how senolytic treatments 
affect β-cell mass. Considering the central role of β-cell mass reduction in T2D, the restoration 
of the proliferative capacity of the cell population may provide a compensatory increase in 
insulin production to reduce blood glucose levels [58]. Senolysis induces a short-term 
decrease in the total number of β-cells, actively removing the senescent population. However, 
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the effect of treatment on β-cell function and glucose tolerance indicates that, in the long 
term, senolysis may restore the proliferative capacity of the remaining β-cells by avoiding 
glucose toxicity or by reducing the local senescence-associated phenotype (SASP) [59]. 
These SASP factors may explain why the accumulation of senescent β-cells impairs glucose 
tolerance and β-cell function. It is necessary to evaluate the secretory phenotypes of various 
subpopulations of senescent β-cells to determine the specific mechanisms underlying the 
senescence-associated loss of mass and function of β-cells. Moreover, the characterization of 
the SASP of β-cells and the effects of its constituent factors may reveal additional therapeutic 
targets for T2D [60]. Insulin-like growth factor 1 receptor (IGF1R) has previously been 
identified as a novel marker for senescent β-cells [57]. Accounting for a high prevalence of 
diabetes in elderly individuals, impaired adaptive β-cell proliferation may likely be involved 
in the pathogenesis of type 2 diabetes mellitus in this population. This hypothesis is based 
on the fact that aging is often accompanied by insulin resistance [48]. In this regard, revealing 
a cause of reduced adaptive β-cell proliferation in aged animals is critical to alleviate the 
pathophysiological consequences of type 2 diabetes that affect elderly individuals. However, 
the roles of intrinsic factors, including senescent β-cells, and extrinsic factors of the aging 
systemic environment, such as signals from other organs, in impaired adaptive β-cell 
proliferation remain to be clarified. Signals from the liver to pancreatic β-cells are mediated 
by neural pathways [61, 62]. Different tissues and cell types are known to have different 
mechanisms of aging, described as hallmarks of aging [63]. Among the nine described 
features of cellular aging, SASP is one of the main characteristics of β-cell senescence [15]. 
Cell senescence is a stress response to a range of factors, such as DNA damage, ER stress, or 
oncogene activation. The senescent state is characterized by the arrest of cell proliferation, 
increased β-galactosidase (β-Gal) activity and SASP secretion. SASP proteins include soluble 
and insoluble factors, such as chemokines, cytokines, and extracellular matrix remodeling 
factors. These factors may induce dysfunction of surrounding cells and accelerate their 
senescence [64]; by recruiting immune cells, they contribute to the formation of a 
proinflammatory microenvironment. In addition, antiapoptotic pathways are activated in 
senescent cells, making them resistant to apoptosis. Senescence, as a response to stress, can 
occur at any time. However, the number of cellular stressors increases with age, while the 
immune response decreases, which may lead to the accumulation of senescent cells in the 
tissues of old animals. Senescent β-cells accumulate in the islets of aged mice and humans, 
and their proportion is further increased in conditions of insulin resistance and type 2 
diabetes mellitus [63]. Although not an indicator of function per se, changes in β-cell mass 
due to a shift in the balance between proliferation and apoptosis affect β-cell functionality. In 
humans, the mass of β-cells normally does not change with aging [65]. Furthermore, some 
studies have shown that there is a functional reserve of β-cell mass that maintains the overall 
level of insulin secretion and blood glucose levels if the threshold is not reached. This 
functional reserve is estimated as 20–25% in rats [66] and 50–70% in humans based on data 
from newly diagnosed type 1 [67] or type 2 [68] diabetes subjects. However, aging reduces 
the ability of β-cells to proliferate in response to higher metabolic demands in rodents [69] 

and humans [19], leading to a limitation in the regenerative capacity of β-cells. In old mice, 
β-cell regeneration is suppressed for a long time [18], which may be associated with β-cell 
senescence [70]. This notion was confirmed by the knockout of p16Ink4a (a marker and 
effector of senescence), which caused increased β-cell proliferation in aged mice [71]. 
However, the mass of β-cells in rodents increases with age [72], which means that the actual 
pool of replicating β-cells is larger in adults than in young animals [73]. Generally, we may 
conclude that age-related changes in β-cell mass and proliferation do not affect β-cell 
performance under nondiabetic conditions. Peripheral insulin sensitivity plays a key role in 
β-cell functioning and the development of type 2 diabetes. The condition of insulin resistance 
caused by obesity or a sedentary lifestyle is initially accompanied by a compensatory increase 
in insulin secretion, which may subsequently decline and translate into overt diabetes in 
susceptible individuals [17]. It is generally accepted that insulin resistance occurs with age 
[74], in part due to the accumulation of senescent cells in adipose tissue and subsequent 
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local secretion of SASP. Interestingly, 
insulin sensitivity has been found 
to improve with age [75], even 
though insulin secretion steadily 
declines. This finding indicates the 
heterogeneity of aging across 
individuals, which is a key concept 
of the pathophysiology of diabetes, 
describes as five subgroups of adult 
diabetes that differ in the degree of 
β-cell dysfunction versus insulin 
resistance [76]. The clinically 
defined subgroup to which an 
individual belongs may be used for 
personalized treatment (Fig. 2).

Changes in other cell types, 
such as blood vessels and exocrine cells, may also affect insulin secretion. For example, 
revascularization of pancreatic islets of aged mice using vessels from young mice has been 
shown to restore their functional and proliferative capacities [77]. In addition, circulating 
factors provide other interesting insights into the mechanisms by which insulin secretion 
is regulated. Thus, studies using parabiosis have shown that the replicative capacity of 
pancreatic islets of old mice is restored when parabiosis is performed with young mice [58], 
suggesting the existence of a circulating factor(s) that “rejuvenates” β-cells.

Therapeutic Approaches to Reduce Cell Senescence

Cellular senescence involves fundamental changes in gene expression and proliferative 
arrest. Senescence may be caused by stresses, such as DNA damage, telomere shortening, 
oncogenic mutations, metabolic and mitochondrial dysfunction, inflammation, and 
autoimmune conditions [46, 78, 79]. The mass of senescent cells increases in many tissues 
with age, in pathological loci during various chronic diseases, and after irradiation or 
chemotherapy [80]. Senescent cells secrete proinflammatory cytokines, chemokines, 
proteases, and other factors called SASP [81, 82]. Senescent cells likely play a role in the 
development and progression of metabolic diseases, such as obesity and type 2 diabetes, 
which in turn can lead to diabetes-induced cell senescence and the development of other 
diabetes-associated diseases, such as cardiovascular and renal diseases. As a result of 
the changes in gene expression, cell function and proliferation are impaired, which also 
affect (through SASP) intercellular signaling [64]. Therefore, targeting senescent cells has 
great potential to improve health [49, 83]. Such strategies may include the prevention of 
cell senescence, reversion of senescence, inhibition of some aspects of the senescent 
phenotype, and elimination of senescent cells (senolysis). Regardless, reversing the signs 
of cellular senescence is a potential new approach to the treatment of T2D. The senolytic 
drug ABT263 (a specific inhibitor of the antiapoptotic proteins BCL-2 and BCL-xL) was 
shown to selectively kill senescent cells in culture in a cell-type-independent manner by 
inducing apoptosis. Oral administration of ABT263 to either young adult mice or mice 
exposed to a sublethal dose of radiation effectively reduced the number of senescent cells, 
including senescent bone marrow hematopoietic stem cells and senescent muscle stem cells 
[84]. A new panel of small molecules has been developed based on resveratrol, which was 
previously proposed for targeting mRNA splicing, to determine whether altered splicing 
factor expression could affect replicative senescence features [85]. The authors showed 
that under growth-permissive conditions, senescent cells showed restored splicing factor 
expression, which led to an increase in telomere length, re-entry into the cell cycle, and 
restoration of proliferation. This study was the first demonstration that restoring the levels of 

Fig. 2. Insulin resistance-accelerated β-cell senescence leading 
to loss of function and cellular identity.
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splicing factors using resveratrol analogs (resveralogs) was associated with the inhibition of 
cellular senescence in primary human fibroblasts. Thus, low-molecular-weight modulators 
of such targets may be promising new anti-degenerative therapies. Another therapeutic 
approach is the inhibition of damaging components of the senile phenotype, primarily, the 
pro-inflammatory secretome. In recent years, regulation of the aging secretome has been 
actively studied, which has made it possible to inhibit it with drugs [60]. As an example of 
the potential benefits, one study demonstrated that inhibition of the senescent secretome 
reduced senile frailty [82]. Eliminating senescent cells in mice by inducing cell death has 
provided the most compelling evidence that senescent cells play a role in diseases and that 
their removal may be beneficial to health [86]. Thus, in recent years, several substances 
have been identified or created that can specifically kill senescent cells [87-89]. In addition 
to the use of pharmacological substances, the immune system can be used to remove 
senescent cells in a similar way. For example, immunotherapy is currently being used to 
fight some types of cancer [90]. In addition, in some cases, a beneficial effect of humoral 
factors [91] that regulate the adaptive proliferation of B cells was shown. Recently, senolytic 
therapies specifically targeting senescent cells were shown to be beneficial for a variety of 
age-related conditions, such as hepatic steatosis, stem cell biology, and longevity [59, 84]. 
T2D usually develops in response to overeating and lack of physical activity in patients 
with a predisposition to insulin resistance and β-cell dysfunction. If compensation for 
insulin resistance does not occur, β-cell dysfunction develops [17, 52]. As shown in rodents, 
mechanisms to compensate for increased insulin resistance include increased secretion 
of insulin [17] and β-cell proliferation [92]. The chronological age of animals limits the 
proliferative capacity of β-cells [51, 93], most likely through mechanisms associated with 
cell senescence. Treatment for one month with JAK1/2 inhibitors or rapamycin was shown 
to enhance cell functions in aged mice [82, 94], and JAK1/2 inhibitors and rapamycin have a 
broad spectrum of action, including the suppression of some SASP constituents. These data 
indicate that senescent cells can potentially contribute to age-related physical dysfunction 
and that appropriate therapies can increase lifespan and health (Fig. 3).

Transcriptome analysis revealed increased expression of prosurvival networks in 
senescent cells, consistent with their established resistance to apoptosis. The use of siRNA 
to silence the expression of key nodes of this network, including ephrins (EFNB1 or 3), 
PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells but not 
proliferating or quiescent, differentiated cells. Drugs targeting these factors selectively kill 
senescent cells. Dasatinib eliminated senescent human fat progenitor cells, while quercetin 
was more effective against senescent human endothelial cells [95]. Finally, there is strong 
evidence for oxidative stress in both type 1 and type 2 diabetes [10-12]. In addition, the 
increased production of reactive oxygen or nitrogen species led to the increased consumption 

Fig. 3. Aging and insulin resistance accelerate β-cell senescence through increasing SASP, whereas β-cell 
senolytic therapies restore β-cell function.
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of endogenous antioxidant enzymes (superoxide dismutase, glutathione peroxidase and 
catalase) and decreased levels of some low-molecular-weight antioxidants, such as vitamin 
D [13]. Notably, pancreatic β-cells have the greatest constitutive vulnerability to reactive 
oxygen species (ROS). Indeed, compared to levels of other mammalian tissues, pancreatic 
β-cells contain lower levels of antioxidant enzymes, such as superoxide dismutase, catalase, 
and glutathione peroxidase, making these cells more vulnerable to the damaging effects of 
ROS [96, 97]. More than three decades ago, it was shown that glutathione peroxidase activity 
and resistance to peroxide are approximately 20 times higher in the liver and kidney than 
in the pancreas [98]. Naturally, in conditions of reduced activity of endogenous antioxidant 
enzymes, more attention is given to new proteins, such as peroxiredoxin 6 (Prdx6), 
which also have antioxidant activity and may be able to protect pancreatic β-cells during 
the development of diabetes. We have conducted systemic studies of the role of Prdx6 in 
protection against type 1 diabetes in vivo and in vitro. Interestingly, the insulin-stimulating 
activity of Prx6 in vitro was detected both when RIN-m5F β-cells were cultivated under 
normal conditions and under stressful conditions, inducing cell death [99]. In an alloxan- or 
streptozotocin-induced mouse model of diabetes, intravenous administration of recombinant 
Prdx6 prevented hyperglycemia, reduced mortality, restored the plasma cytokine profile, 
and reduced β-cell destruction in the islets of Langerhans in the mouse pancreas [100-102]. 
Interestingly, a group of authors from Italy, using PRDX6 knockout mice, proved that Prdx6 
is involved in the pathogenesis of type 2 diabetes, which was characterized by both reduced 
glucose-dependent insulin secretion and increased insulin resistance [103-104]. We suggest 
that these results are attributable to the ability of Prdx6 to stimulate insulin production in 
pancreatic β-cells [99], which should clearly affect the insulin resistance characteristic of 
type 2 diabetes. In addition, using 3T3 fibroblasts, Prdx6 reduced cell senescence caused by 
a sublethal dose of X-ray radiation [105]. This finding indicates that Prdx6 may be included 
in the list of senolytics. In conclusion, preclinical studies are needed to examine the potential 
toxicity of senolytics and to develop regimens for their administration. Revealing the possible 
side effects of senolytics as a class and as individual substances is of particular importance.

Conclusions and Directions

Due to the increase in life expectancy and affluence, aging-associated metabolic 
disorders such as obesity and type 2 diabetes increase rapidly and become a serious health 
burden. In 2021, the estimated prevalence of patients with diabetes mellitus reached 537 
million, and diabetes mellitus was responsible for 6.7 million deaths [1]. Increased insulin 
resistance and impaired insulin secretion are significant characteristics manifested by 
patients with type 2 diabetes mellitus, and this is associated with accumulation of senescent 
cells in multiple organs. Cellular senescence is defined as a state of irreversible cell cycle 
arrest with concomitant functional decline [106].

Targeting senescent cells offers a lot of therapeutic opportunities, particularly in the 
context of age-associated diseases. This knowledge has fueled testing of senolytic drugs as 
a novel therapeutic paradigm. Increased insulin resistance and impaired insulin secretion 
have central roles in the pathophysiology of T2DM [107]. Age-associated changes in β 
cell functions and proliferation suggest the importance of senescence-related aspects of 
pancreatic β cells in pathogenesis of T2DM.

Senescence is a cellular state characterized by irreversible cell cycle arrest with 
functional decline due to telomere shortening or senescence-inducing stresses, e.g., DNA 
damage, oncogenic stress, and oxidative stress. As research targeting “cellular senescence/
chronic inflammation” is developing rapidly, removal of senescent cells, called “senolysis”, is 
a potentially attractive approach [108].

Although many of the detrimental consequences of senescence may be attributed to 
SASP, direct evidences of the SASP role are often lacking. Transgenic models with specific 
targeting of senescent cells may prove the causality.
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Senescent cells undergo a permanent growth arrest, produce a complex secretome 
(known as the senescence-associated secretory phenotype, SASP), and develop characteristic 
changes including transcriptional, epigenetic, morphological, and metabolic alterations 
[109]. The development of ingenious models allowing the manipulation of the SASP will help 
to determine its precise involvement as a mediator of the effects exerted by senescent cells. 
Actually, it may be very complicated given SASP heterogeneity and its context-dependent 
effects.

It is also important to reveal regulators of the SASP and discriminate the SASP from 
inflammatory events induced by other factors. For this purpose, identification of reliable 
in vivo markers of senescence and models that allow for targeted manipulation of SASP 
regulatory factors within senescent cells may be useful. Indeed, a key function of the SASP is 
signaling for different immune cells, including natural killer (NK) cells, macrophages, and T 
cells. Immune-mediated clearance of senescent cells also suppresses tumor initiation [110].

To design senotherapies targeted to specific diseases, we need better understanding 
as to what cell types undergo senescence, because eliminating certain senescent cell types 
can be harmful [111, 112]. Clarification of the molecular and physiological properties of 
senescent cells, including their SASP profile, is also needed.

There is every reason to believe that beta-cells senescence and associated consequences 
may have some genetic basis. Indeed, diabetes mellitus was reported to co-exist with progeria 
[113]. Progeria (premature aging) or Werner syndrome (WS), also known as adult progeroid 
syndrome, is a rare, early-onset, and age-related disease characterized by segments of aging 
phenotypes [113]. In addition, it was shown that partial lipodystrophy with severe insulin 
resistance may manifest in WS-linked premature aging syndrome [114].

Anyway, targeting senescent cells to delay aging and limit dysfunction, known as 
“senotherapy,” is gaining momentum, and drugs that selectively kill senescent cells, termed 
“senolytics” are a major focus. A little explored area related to the clinical use of senolytics 
needs to be advanced.

Further investigations of molecular mechanisms of cellular senescence in diabetes and 
senolytic compounds with clinical efficacy and safety should provide a clinical application of 
this concept.
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