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Abstract

Metastasis, like carcinogenesis, involves the disruption of homeostasis such that cancer cells
travel from the primary tumor to distant parts of the body. Almost all cancer deaths are due
to metastatic spread. The prevailing theory of metastasis is an incomplete doctrine and far
from sufficient as only 0.2% of free cancer cells result in the spread of cancer. To develop
reasonable and effective cancer therapies and to prevent (or reverse) carcinogenesis and
metastasis, a comprehensive understanding of how both carcinogenesis and metastasis
arise is necessary. Fundamental questions in cancer biology have been asked and answered
over decades of research: How do most cancers develop (Epistemology of the Origin of
Cancer I, 2014-2022)? Which is the first cancer cell (11, 2023)? The third basic question in
cancer biology remaining to be addressed is: What are the fundamentals of how metastasis
develops? The pre-cancerous niche (PCN) that forms during carcinogenesis is altered by
ongoing complex signaling into a premetastatic niche 1 (PMN-1): p130(cas)/crk/DOCK180
formation is necessary for lamellipodia formation, thereby enabling cell mobility. Cancer-
associated fibroblasts (CAFs) begin to release fibronectin CXCL12 and Keratin 19. PMN-1
is transformed into PMN-2 during ongoing crosstalk and transformation of anti- into pro-
tumorigenic platelets, macrophages, and neutrophils. Finally, persistent signaling and
immune evasion result in the conversion of PMN-2 to PMN-3 with heterogeneous cancer
satellites - the term “satellite” is used herein in accordance with its original meaning (a cell
or particle escorting another). PMN-3 serves as a prerequisite for intravasation, traveling,
and dissemination of cancer cells away from the primary tumor. Eight heterogeneous cancer
satellites, including Trojan horses (immune evasion), travel alone or in combination: (1)
cancer cells and (2) CAFs migrate along the CXCL12 and fibronectin gradient; (3) cancer
cells surrounded by CAFs are shielded from the immune system and travel away from the
primary cancer; (4) CXCL12 and Keratin 19 coat cancer cells; (5) platelets surround cancer
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cells and (6) CAFs, thereby facilitating cancer spread; and (7) neutrophil extracellular traps
shield cancer cells and (8) CAFs. Metastasis in epithelial cancer occurs in parallel with
carcinogenesis after the pre-cancerous niche is transformed into pre-metastatic niches
(PMNs), which are indispensable to the origin of metastasis. Eight heterogeneous cancer
satellites, including Trojan horses responsible for immune evasion, alongside reciprocally
affecting sequences, wander alone or in conjunction with other cancer cells. This elucidates
why the current practice of multimodal anti-cancer cell therapy should now be seen in a new
light in which the benefits depend not on direct cancer cell effects, but on indirect cytopenic

effects, which have previously been regarded merely as adverse effects.

© 2025 The Author(s). Published by
Cell Physiol Biochem Press GmbH&Co. KG

Introduction

Homeostasis is a fundamental biochemical and physiological regulatory process that
maintains a balance of all systems within the body, thereby sustaining a state of health.
Homeostasis is an equilibrium state and a law of nature, without which no life would be
possible. When the homeostatic balance is disrupted, diseases begin to develop. A simple
analogy for homeostasis is the ability of a rubber band to be stretched and return to its
original shape and size when released, but to break when stretched too far. This analogy of
breakage applies to homeostasis in chronic diseases such as cancer. In science, homeostasis
has largely been ignored in the understanding of disease processes [1].

The disruption of homeostasis, in all its complexity, is a hallmark of cancer and metastasis.
Because homeostasis is critical for maintaining health, nature maintains homeostasis
through multiple routes, such that biochemical and physiological redundancies protect
against disease and enable health. More detailed information on homeostasis is provided in
the supplemental material (Supplement part 1, Homeostasis).

To achieve homeostasis, cells must “talk” to one another to gain information on what is
happening in their own neighborhood and across the living organism. This process is referred
to as cell-cell communication, which has been described as “the music that the nucleus hears”
[2, 3]; moreover, “biological processes as well as cell-cell communication and signaling are
themselves a multidimensional musical opera in different acts, which are played differently by
different symphony orchestras rather than by a soloist” Additionally, as a colleague of ours
stated, there is a lot of music, which is too fast to be heard by the nucleus.

Cancer involves the disruption of homeostasis, including dissonant and aberrant cell-
cell communication. Most cancers (80.5%) are epithelial cancers, which markedly differ in
their development, spread, and response to therapy [4]; epithelial cancer relapse rates in
adults have not changed substantially, and cancer incidence continues to rise and is expected
to double by 2070. The absolute (unadjusted) cancer mortality rates have not changed
considerably over the past 80 years, although tangible benefits have been achieved in certain
subpopulations where cause-based approaches have been adopted; for example, hepatitis C
virus-induced liver cancer and human papillomavirus-induced cervical cancer have recently
been prevented by vaccines.

Age-adjusted data are useful for comparing potential risks but should not be mistaken
for precise measures, particularly when demographics change over long time periods. This
important aspect is particularly evident in cancer statistics, wherein relative age-adjusted
figures are used to demonstrate progress against cancer but often contradict the absolute
cancer mortality rates [4]. Even gains in early cancer detection have achieved only small
benefits in terms of mortality.

Both clinical and experimental data show that genetics (e.g., mutations), despite having
been consistently described as key to understanding and treating cancers and having
remained a major cancer research focus, does not explain the cause of most cancers. To
date, only approximately 5% of cancers have been demonstrated to be caused by genetic
mutations [5]. This ongoing focus on mutations explains why approximately 80% of cancers
are first diagnosed in advanced stages, and approximately 50% of patients with cancer have
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metastasis at the time of initial diagnosis [6]. Somber findings have indicated that cancer
incidence, metastasis, and mortality statistics have not changed substantially over the past
century [4].

The identification of certain somatic mutations like TP53, KRAS, EGFR and others have
proven helpful in the treatement of certain epithelial cancer and most notably in the selection
of immunotherapeutic agents that work better in patients with such somatic mutations. That
said, the application of the mutation theory has, to date, not substantially improved patient
survival even though it has improved disease free progression in certain cancers.

One persisting challenge is that no morphological features can be used to distinguish
tumorigenic from non-tumorigenic strains [7]. For example, no discernible difference in DNA
repair exists between normal and pre-neoplastic breast tissues, thus further confirming the
minor (or absent) role of somatic mutations as the cause of most cancers [8].

A known, yet largely ignored, finding is that genetic mutations do not clinically explain
most epithelial cancers, because genes are not merely blueprints containing information
[3] and do not function as blueprints for life [9, 10]. Thus, a “gene delusion” applies to the
understanding of most cancers [11]. Genome-wide association studies, as part of the Human
Genome Project, cost $3 billion from 1988 to 2003 in the U.S. and had an economic impact
of approximately $796 billion [12] and an estimated economic return to the U.S. economy of
$1 trillion [13]. But where are the benefits to patients with cancer in terms of quality of life
or overall survival, measured in years, not in mere weeks or months, as continually indicated
by numerous clinical studies? Despite investments of billions of dollars, the incidence of
epithelial cancers is predicted to rise. The development of effective cancer therapies and
metastasis prevention can be achieved only with proper etiological understanding.

To help patients most in need, essential cancer biology questions have been asked
and answered over decades of research on disrupted homeostasis, including signaling and
crosstalk in carcinogenesis: [1] How do most cancers develop? (2) Which is the first cancer
cell?

These two fundamental cancer biology questions were answered by complex research
in 2014-2022 (Epistemology of the Origin of Cancer I) (FIGURE 1) [3, 14] and 2023
(Epistemology of the Origin of Cancer 1) (Please see figures 1 to 3 in [15]).

Simplified scheme representing ongoing disruption of homeostatic crosstalk. This
illustration was originally discussed in the paradigm presented in our prior publication [3,
14] and modified in 2019 [16-19]. The first four carcinogenesis sequences are included: [1]
a pathogenic stimulus is followed by [2] chronic inflammation, thus resulting in [3] fibrosis
with associated remodeling of the cellular microenvironment; after these changes, a [4] pre-
cancerous niche (PCN) is formed as a product of fibrosis and it's remodeling by lysyl oxidase
(LOX) through persistent inflammation.

Finally, CAFs undergo mesenchymal-epithelial transition (MET) and express epithelial
markers that facilitate their integration into the target tissue. The continual increase in CAFs
ultimately leads to complete and unresolvable disruption of physiologic homeostasis. CAFs
then undergo MET, and these cells, which continue to express epithelial markers, become
the first cancer cells. The former fibroblasts are then integrated into the epithelium. This
neoplastic transformation to a cancerous phenotype also explains the very high heterogeneity
of cancers.

Overall cancer mortality rates and rates of metastasis in epithelial cancers have not
substantially changed in the past 80 years [4].

Metastasis starts soon after the first cancer cell has developed

Readers are referred to the further details regarding many aspects of metastasis
complexity and heterogeneity presented in the supplemental materials.
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Fig. 1. This Fig. combines findings from prior research [3, 14, 16, 17] with signaling crosstalk, without
applying the Chronic Stress Escape Strategy (CSES) and the Normal Cell to Cancer Cell Transition (NCCCT).
The nomenclature of common abbreviations is shown in bold and is followed by common names or
International Union of Pure and Applied Chemistry (IUPAC) names, as available: PCN: pre-cancerous niche;
SphK: sphingosine kinase isoform; S1P: sphingosine-1-phosphate; IL-6: interleukin 6; IL-8: interleukin
8; TNFa: tumor necrosis factor alpha; IFNy: interferon gamma; ALOX: lipoxygenase, arachidonate
lipoxygenase; ALOX12: 12-lipoxygenase, 12-LOX, 12S-LOX, arachidonate 12-lipoxygenase 12§ type; ALOX5:
5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase; 12-HETE: 12-hydroxyeicosatetraenoic acid; LTA4:
leukotriene A4, 4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl|butanoic acid; LTB4:
leukotriene B4, (5S,6Z,8E,10E,12R,147)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid; LTC4: leukotriene
C4, (5S,6R,7E,9E,117,147)-6-[(2R)-2-[[(4S)-4-amino-4-carboxybutanoyl]amino]-3-(carboxymethylamino)-
3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid; LTD4: leukotriene D4,
(5S,6R,7E,9E,117,14Z)-6-[(2R)-2-amino-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-
7,9,11,14-tetraenoic acid; LTE4: leukotriene E4, (5S,6R,7E,9E,117,147)-6-[(2R)-2-amino-2-carboxyethyl]
sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid; 5-oxo-ETE: (6E,8Z,11Z,147)-5-0xo0icosa-6,8,11,14-
tetraenoic acid; Cox: cyclooxygenase; Cox-1: cyclooxygenase 1; Cox-2: cyclooxygenase 2; Cox-3: isoform of
Cox-2 (therefore in brakes); PGG2: prostaglandin G2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroperoxyoct-1-
enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid; PGH2: prostaglandin H2, (Z)-7-[(1S,4R,5R,6R)-
5-[(E,3S)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl|hept-5-enoic acid; PGFF2a:
prostaglandin F2 alpha, (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]|cyclopentyl]
hept-5-enoic acid; PGD2: prostaglandin D2, (Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-
3-oxocyclopentyllhept-5-enoic acid; PGE2: prostaglandin E2, (Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-
3-hydroxyoct-1-enyl]-5-oxocyclopentyl|hept-5-enoic acid; MDA: malondialdehyde, propanedial; TXAZ2:
thromboxane A2, (Z)-7-[(1S,2S,3R,5S)-3-[(E,3S)-3-hydroxyoct-1-enyl]-4,6-dioxabicyclo[3.1.1]heptan-2-yl]
hept-5-enoic acid; CYP*: cytochrome P450 isoforms; 20-OH-PGE2: 20-hydroxy prostaglandin E2; 20-HETE:
20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoic acid; SOX: [sex-
determining region Y (Sry) box-containing] transcription factor family; IL-1: interleukin beta 1; IL-33:
interleukin 33; ROS: reactive oxygen species; CXC CC: chemokine receptors; aSMAD: alpha-smooth muscle
actin; miR21: microRNA-21; p300: protein 300 (p300-CBP coactivator family); SP1: specificity protein 1;
AP1: activator protein 1; E2F4/5: cytoplasmic complex of Smad3, retinoblastoma-like protein 1 (P107,
RBL1), E2F4/5 and D-prostanoid (DP1); p107: retinoblastoma-like protein 1, RBL1; TGF@: transforming
growth factor beta; Pro-MMP-9: pro-matrix metalloproteinase 9; Pro-MMP-1: pro-matrix metalloproteinase
1; Pro-MMP-7: pro matrix metalloproteinase 7; SNAIL: zinc finger protein SNAI1; MMP-1: matrix
metalloproteinase 1; MMP-7: matrix metalloproteinase 7; MMP-2: matrix metalloproteinase 2; E-cadherin:
CAM 120/80 or epithelial cadherin, cadherin-1, epithelial cadherin; CXCL1: chemokine (C-X-C motif) ligand
1; Osm: oncostatin-M; PI3K: phosphatidylinositide 3-kinase; FOX03a: forkhead box protein 03a; p120:
catenin delta-1, protein 120; Rho: Ras homolog gene family, member A; Racl: Ras-related C3 botulinum
toxin substrate 1; cdc42: cell division control protein 42 homolog; BIM: Bcl-2 interacting mediator of cell
death; PUMA: BH3-only protein; CXCR4: C-X-C motif of chemokine receptor 4; cdk2: cyclin-dependent kinase
2; LOXL3: lysyl oxidase homolog 3; mTORc1: rapamycin complex 1; PAI1: plasminogen activator inhibitor-1.
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The injection of radiolabeled cancer cells were found to result in only 0.1-0.2% of the
cells becoming metastatic [20]. The lack of change in metastatic rates in recent decades
suggests that the origins and development of metastasis must differ from the prevailing
understanding. Therefore, a third fundamental question in cancer research that remains to
be answered is: What are the fundamentals of how metastasis occurs?

Herein, we provide potential explanations of the fundamentals of how metastasis arises
in epithelial cancers. Our findings are concordant with clinical, scientific, and experimental
findings, which together demonstrate the diversity of metastatic patterns. Deciphering these
metastatic patterns requires an in-depth understanding of complex signaling and crosstalk.

Metastasis

Metastasis comes from the Greek term petdotaotg, meaning migration or displacement.
In cancer, this term describes the secondary cancers that occur in areas of the body distant
from the primary cancer. Therefore, cancer cell formation is temporally followed by
metastasis.

Henry Earle (1789-1838), in 1823, reported that local irritation was the reason for
many cancers and their spread [21]. Several years later, in 1829, Joseph-Claude-Anthelme
Récamier (1774-1852) first used the term “metastase” (metastasis), in a report of a case of
breast cancer with brain metastasis [22 reviewed in 23].

The supplemental material provides detailed information regarding proposed models
of metastasis (various vascular hematogeneous lymphatic theories and their combination,
such as the embolic theory; preliminary work and the subsequent development of seed and
soil theory; and cancer implantation models) (Supplement, part 2, Metastasis theories);
metastasis models (Supplement, part 3, Metastasis models); and metastasis injection models
(Supplement, part 4, Metastasis injection models).

This knowledge is indispensable for understanding the biology of cancer and the origins
of metastasis, but still is incomplete. The prevailing wisdom in cancer research is that
circulating cancer cells are the main source of metastasis. We discuss those data underlying
these theories of metastasis and show why they are insufficient to explain the spread of
cancer from the primary tumor to distant sites.

Circulating tumor cells

Circulating tumor cells (CTCs) consist of red blood cells (erythrocytes), white blood cells
(leucocytes), lymphocytes (antibody producing B- and T-cells), monocytes and macrophages,
dendritic cells (type 2 dendritic cells and plasmacytoid dendritic cells), basophils, and
platelets. CTCs have been used to explain the detection of cancer cells in circulation (a
correct observation but an incorrect interpretation) [24, 25] as follows: epithelial cells
break through the basal membrane; enter vascular structures (veins, arteries, and lymphatic
vessels); are carried away by the blood and lymph streams; and implant elsewhere, thus
giving rise to metastasis. However, detection of cancer cells in the blood is not synonymous
with cancer dissemination, despite widely being accepted as such. The data disproving the
CTC theory is discussed below.

In prior studies, highly aggressive cancer cells were cultivated [20, 26], and all inoculated
cells were radiolabeled with %I-iodo-2"-deoxyuridine (***IUDR). Immediately after injection,
most cancer cell emboli arrested within the lungs, and a few very rarely entered the
pulmonary circulation. Within 24 hours, less than 1% of cancer cells survived. After 2 weeks,
only 0.2% of cancer cells injected into the bloodstream (400 of 200, 000) had survived in the
lungs. No injected cancer cells survived in the liver, spleen, kidney, blood, or urine. Notably,
only a small number of patients with disseminated tumor cells and CTCs develop clinically
evident metastatic cancer [27]. Consequently, most (99.8%) cancer cells in the bloodstream
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do not survive to cause metastasis [20, 26]. Injected *°I-iodo-2"-deoxyuridine (*?*IUDR)-
labeled cancer cells killed by heat or radiation showed no radioactivity in the lungs 8 hours
later. Injecting the same cells without inactivation revealed that 24 hours post-injection, no
radioactivity was evident.

These data reveal that the efficiency of the immune system and the limitations of the
seed and soil-theory of CTCs. A cancer nodule of 1 cm contains 1 billion cells (1, 000, 000,
000 cells, 10° cells), only 1 million of which (1, 000, 000 cells, 10° cells; 0.1%) can be shed
into the circulation per day. However, injection of 2 x 10° cells (2, 000, 000 cells) per animal
rarely resulted in lung metastasis [28]. These data demonstrate that the existing explanations
for how metastasis occurs are incomplete, and approximately 99.8% of metastasis occurs
through a different route(s).

Moreover, a similar increase in CTCs was observed in a different experiment: induced
peritoneovenous shunts aimed at decreasing malignant ascites and improving quality of life
in patients with ovarian cancer, caused millions of cancer cells to enter the bloodstream but
did not increase metastasis [29, 30]. Various terms are used to describe CTCs, including
clusters, microemboli, and collective tumor cell migration with high metastatic potential
[31, 32]. Additional information regarding CTCs is provided in the supplemental material
(Supplement, part 5, Circulating tumor cells).

Clinical findings

Clinical findings for metastases are heterogeneous, given the distinct microenvironments
of cancers across different organs [6, 20, 23, 30].

Various epithelial cancers, such as those from the ovaries, colon, pancreas, rectum, and
stomach, heterogeneously spread to the lymph nodes, liver, and lungs, and subsequently
the peritoneum. Furthermore, pancreatic and gastric cancers are upper gastrointestinal
cancers without major venous flow through the inferior mesenteric vein. Esophageal cancer,
despite its location and histology (adenocarcinoma versus squamous cell carcinoma), can
spread to the lymph nodes, lungs, liver, bones, and peritoneum. In contrast, breast cancers
preferentially metastasize to the bones, followed by the brain, liver, and lungs. Prostate and
kidney cancers metastasize to the adrenal glands, bones, lymph nodes, liver, lungs, and brain.
Bladder, thyroid, and uterine cancers preferentially spread to the bones, liver, and lungs.

Lymph node metastasis in primary breast cancer occurs in approximately 30-50%
of cases [33, 34]. A higher likelihood of lymph node metastasis is associated with age
(particularly younger age in women), race (particularly Black), primary site (particularly
the upper-outer quadrant), histology (particularly lobular carcinoma), breast subtype
(particularly HR-/Her2neu+), grade (particularly grade 3), and T-stage (particularly the
T3 category). Tumor size (in 10 mm increments), lymph nodes, and distant spread do not
demonstrate linear relationships, thus suggesting that larger tumors do not necessarily
spread to distant organs or the lymphonodular regions [35]. This is in agreement with
findings in other epithelial cancers, in which T4 (larger) cancers do not always demonstrate
metastasis.

Lymph node metastasis in animal models aids in understanding the time course
of metastasis. Lymphatic spread was found to occur as early as the 4" day after tumor
transplantation in a mouse model [36]. In the stage of nidation, no metastasis occurred.
Therefore, lymph node metastasis occurs early [37] and after non-visible cancer spread.
Dormancy of cancer cells can be considered a rule rather than an exception.

Friedrich Stelzner (1921-2020) showed that a sharp separation of hematogenous
venous metastases between the portal vein and the cava system is not possible because of a
network of natural short-circuit anastomoses [38]. Furthermore, if lymphatic drainage were
the major route of lymphatic cancer spread, several questions should be asked, including
why patients undergoing esophagectomy for esophageal squamous cell carcinoma (ESCC),
including thoracic duct resection, have a 4% higher rate of distant metastasis [39, 40].
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Large colon carcinomas result in metastasis less often than moderately sized or small
cancers, as shown in a study of 3, 000 colorectal cancers (CRCs) [41]. This finding has been
widely reported [42], but has been disproven, given that Frederick Allen Coller (1887-1964),
approximately 85 years ago, demonstrated that lymph node metastasis occurs at higher
rates in smaller rather than larger bowel cancers [43]. However, in breast cancer, greater
tumor size is associated with more metastatic lymph nodes.

These observations indicate that not only the size of the primary tumor but also the
organ where the primary cancer occurs determines metastatic potential. This suggests that
signaling and crosstalk biology, which have not been considered as necessary so far, seem to
play a much more important role.

In a prostate cancer study, approximately 33% of bone metastases were observed in the
sternum and ileum, but only 9% showed widespread bone metastases [44], thus indicating
that the distribution of these metastases could not be explained by vascular theory.

Intravenous inoculation of radiolabeled CRC cells showed 66% lymph node metastasis,
thereby suggesting that venous vascular cancer cell inoculation was responsible for more
than two-thirds of the spread into the lymph nodes [45].

According to the Fuchs-Paget seed and soil theory [46, 47], cancer cells (the “seed”) are
distributed through the vascular system, and metastases can develop only in locations with
favorable conditions (the “soil”). Ewing, in 1928, also suggested that cancers spread to areas
where the vascular system (blood and lymphatics) allows them to travel [48]. Although early
cancer surgery was long believed to prevent metastasis, clinical data have revealed that
even after one or two decades, patients with epithelial cancer can develop heterogeneous
metastasis [15, 49], and animal studies have demonstrated that such lesions can lead to
metastatic spread [50].

A study of 213 CRC cases has examined hypermutable DNA regions and/or conducted
phylogenetic analysis to elucidate the origins of lymphatic or distant metastasis [51]. In
approximately 65% of cases, lymphatic and distant metastases arose from independent
subclones in the primary tumor, and only 35% of cases shared a common subclonal origin.
Why were these percentages so low? If the seed and soil theory of metastasis were correct, the
percentages should exceed 80-90%.

These heterogeneities cannot be explained by free cancer cells, free circulating DNA,
or somatic mutations, or by applying an anatomical mechanistic vascular (lymphatic
and hematogenous) approach, which nonetheless remains widely taught in oncology
training programs. Training suggesting that anatomy facilitates cancer cell spread through
“highways” does not provide a sufficient explanation. A more nuanced view of the cancer
microenvironment would aid in understanding the roles of signaling and crosstalk necessary
for cell migration and subsequent increases in motility.

Cancer microenvironment

The heterogeneous cancer microenvironment, including cell compartments, signaling,
and cancer spread, together with transformation of the pre-cancerous niche (PCN) to the
premetastatic niche (PMN) and increased cell mobility can explain the heterogeneous
clinical findings.

In gastric cancer cells, CAFs maintain the chronic inflammation stage, with ongoing
activation of the PCN, by increasing p300, which in turn activates nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) signaling, thus resulting in mesenchymal
stem cell (MSC) differentiation into CAFs [52]. This self-driven, persistent inflammatory
stimulation has also been observed in breast cancer cells [53]. Fibroblasts and CAFs are
prominent in the cancer microenvironment. Essential information regarding heterogeneity
is provided in the supplement (Supplement, part 6, Fibroblast heterogeneity).

Fibroblasts themselves show high heterogeneity and are known to convert to CAFs
and to promote metastasis in cancers of the breast [54], prostate [55], pancreas [56], and
colon [57]. Co-cultivation of cancer cells with fibroblasts increases the transformation of
fibroblasts into CAFs [58].
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Do fibroblasts derive from EMT during the chronic stress escape strategy (CSES)? Or
do fibroblasts derive from the remodeled tumor microenvironment during carcinogenesis
through the PCN sequence or perhaps from a normal cell to cancer cell transition (NCCCT)
sequence? These questions prompt additional questions: are migrating cells the source of
metastasis in distant organs, or do these secondary cancers intrinsically arise from the organ
where the metastasis is found?

The fibroblast atlas cannot explain the spatial dynamics of fibroblasts, nor can it clarify
the locations from which each fibroblast derives, although it advances knowledge regarding
heterogeneity and orthologs in different species. Intriguingly, gene expression studies [59]
have related the heat maps of the relative average expression of the most strongly enriched
genes for each cluster to particular organs, such as Ccl19, Ccl21a, and Bst1 in lymph nodes;
Cxcl12, Lepr, and Sp7 in bone tissue; Npnt and Ces1d in alveolar lung tissue versus Hhip and
Aspn in peribronchial lung tissue; and Fblnland Sfrp1 in intestinal tissue. However, none of
these location-specific gene expression findings answer the key question of how these relate
to metastasis.

Next to fibroblasts and fibrocytes, transition to CAFs can occur in mesenchymal stem
cells (MSCs) [60], hematopoietic stem cells [61], and adipose-derived MSCs [62]. The
transition from MSCs is dependent on myeloid zinc finger 1 (MZF1) and transforming
growth factor 3 (TGFf3), which are mediated by osteopontin (OPN) [63]. OPN is an acidic
hydrophilic glycophosphoprotein that influences avB3-integrin and CD44 and serves as
a cell attachment protein. The c-Jun homodimer of AP-1 is necessary for OPN promoter
activity and binds the OPN promoter in 4T1 cells; its levels are increased by PI3K-dependent
JNK- and c-Jun activation, thus promoting metastatic behavior, such as adhesion, migration,
and invasion in vitro [64].

To increase cancer drug efficiency, CAF research has focused on overcoming anticancer
drug resistance [65-68] and promoting understanding of the CAF signature to evaluate
immunotherapy responses [69].

Furthermore, MSCs can be recruited from the bone marrow, transform into fibroblasts,
and subsequently transition into CAFs [70]. A pH decrease within tissue can result in the
transitioning of MSCs to CAFs [71].

CAFs show neuroendocrine differentiation in a CD105-dependent manner [72]. This
neuroendocrine differentiation has been associated with circulating tissue inhibitor of
metalloproteinase-1 (TIMP-1) in a manner dependent on ERK and NF-kB in metastatic
castration-resistant prostate cancer [73]. These findings support the theory that the primary
sources of epithelial cancers are fibroblasts and CAFs and not epithelial cells [15].

To shed light on the heterogeneity of fibroblasts and CAFs, studies have conducted
single-cell RNA sequencing in pancreatic cancer tissues from six human patients and
adjacent normal pancreatic tissue from two of these patients, as well as from Kras+/LSL-
G12D; Trp53+/LSL-R172H; Pdx1-Cre (KPC) pancreatic cancer in mice [74 and Supplement,
part 4]. Studies focusing on p53 downstream of CAFs [75-77] have suggested that CAF
heterogeneity is associated with Yes protein 1 (YAP1), as indicated by the activation of MSCs
[78], in cancers of the breast [79], pancreas [80], prostate [81], and colorectum [82].

Furthermore, disruption of homeostatic signaling in Dickkopf-3 (DKK3), an effector
of heat-shock factor 1 (HSF1), induces the transcriptional co-factors YAP (gene Yap1) and
TAZ (gene Wwtrl) via Wnt signaling, which is crucial for the tumor-promoting ability of
CAFs [83]. The complexity of YAP1 homeostasis is indicated by the influence of cytoskeletal
dynamics, because myocardin-associated transcription factors are required for the YAP
pathway for CAF contractility and for its proinvasive properties [84].

Extracellular matrix (ECM) stiffness induces the activity of Rho-associated coiled-Coil
kinase (ROCK), integrin clustering, mitogen-activated protein kinase 1 (MAPK 1, extracellular
signal-regulated kinase 2, ERK2) signaling, and subsequent nuclear accumulation of SNAIL1,
which in turn interacts with YAP1 [19, 85].

A more detailed signaling and crosstalk information about YAP, and fatty acid desaturase
2 (FADS2, w-6-desaturase, D6D) signaling in the disruption of signaling homeostasis induced
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crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” can be found
elsewhere (Please see figures 1 to 3 in [19]). More detailed information on the associations
between CAF interactions and Neuropilin-1 (NRP1) is provided in the supplemental material
(Supplement, part 7, CAF interaction with Neuropilin-1 and EGF-like domain-containing
protein 7).

The copper-dependent enzyme lysyl oxidase (LOX) [14, 15, 86-88] is activated by
fibroblasts under stress [89], crosslinks collagen [90], and promotes cancer in vivo [91].
Moreover, if the remodeled matrix persists in the lamina fibroreticularis, a PCN with
enhanced stiffness and cell transition properties is generated [14-19].

H. pylori induces NF-kB and the YAP1 axis in gastric pre-cancerous Helicobacter-
induced lesions [92] and increases SALL4, which induces the CAF phenotype [93, 94]. H.
pylori infection promotes hepatoma-derived growth factor (HDGF) expression in human
gastric cancer. Subsequently, HDGF recruits MSCs and regulates their differentiation
into myofibroblast-like cells expressing a-smooth muscle actin (a-SMA), procollagen o1,
tropomyosin I, desmin, fibroblast activation protein (FAP), and fibroblast markers prolyl-4-
hydroxylase A1 (PHA1) and fibroblast specific protein-1 (FSP-1)/S100A4 [95].

More detailed information on the association of Sal-like protein 4 (SALL4) and miR-33 is
provided in the supplemental material (Supplement, part 8, Sal-like protein 4 and miR-33).

CAFs can also derive from epithelial cells, pericytes, adipocytes, and endothelial cells [96,
97]. Furthermore, inhibition of the histone methyltransferase enzyme euchromatic histone-
lysine N-methyltransferase 2 (EHMT2, G9a) decreases active CAFs to a less proliferative/
invasive state [98].

In vitro, macrophages (THP-1 cells) induce differentiation to the CAF phenotype, which
can lead to gastric epithelial lesions with malignant features via EMT [99]. Again, these
findings indicate that the primary sources of epithelial cancers are fibroblasts and CAFs, but
not epithelial cells [15]. The tumor microenvironment provides the prerequisites for cell
migration from the primary tumor to distant sites (metastasis).

Cell migration

Cell migration is a complex and poorly understood process with central roles in
embryogenesis, physiology, and the pathophysiology of diseases [100]. The following
statement by Erwin Biining (1906-1990), who discovered the internal clock together with
Jirgen Walther Ludwig Aschoff (1913-1998) and Colin Stephenson Pittendrigh (1918-
1996), remains relevant: “Perhaps even today we do not fully realize the inherent complexity
of many biological phenomena” [101].

The dynamic combination of local and peripheral conditions, cell-cell cell-
microenvironment communication and adhesion results in signaling and crosstalk, wherein
the information processing is akin to changes in language and grammar with modifications of
polarityalignmentand directlocomotion and velocity. The cellular microenvironment with its
modifications of stiffness and elasticity by crosslinking changes, not just cell communication
locally, but also within the cell network, its organization (tissue). Together, these factors can
result in cell transition with malignant consequences for the local microenvironment, an
organ, or the whole organism, thereby resulting in metastasis.

Additionally, a difference exists between single cells or compartments and multiple cells,
such as cancer satellites that move and travel alone or together. According to a simulation
analysis, whether cells join in small or large numbers during cell movement appears
irrelevant, because cell polarity determines cell orientation and the direction of migration
[102].
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Stiffness gradient

A rigid matrix promotes cell proliferation [103] through a process -called
mechanotransduction [104, 105], which is dependent on modulation of integrin expression
[106, 107]. Independently of cell size or cell division, cell migration typically aligns along
with the stiffness gradient [108].

Other variables influencing cell migration, beyond the composition of the cytoskeleton
and cytoplasm [109], include ion channels [110], various types of signaling [111], and
chemotaxis [112].

Chemotaxis

Chemotaxis, locomotion along a gradient [101], was observed and reported in bacteria
by Theodor Wilhelm Engelmann (1843-1909) in 1881 [113] and by Wilhelm Friedrich
Philipp Pfeffer (1845-1920) in 1884 [114]. A statement by Pfeffer, in 1893, that “the senses
of unicellulars are not poorer than those of vertebrates” [101], was considered sacrilegious at
the time. Changes in chemotaxis always impair cell motility [115].

However, polarity and lamellipodia are also important for cell mobility, thereby enabling
pre-cancerous and cancer cells to cross the basement membranes, enter the circulation, and
become dispersed.

Cells use modifications of plasticity and actin-rich protrusions (filopodia, lamellipodia,
invadopodia, podosomes, and lamellipodia) to migrate through the extracellular matrix
(ECM), access the endothelium, and consequently undergo transendothelial migration and
entry into the vascular system [116].

Spatial asymmetry and polarization

Spatial asymmetry causes morphological polarization with front and rear differentiation,
thus defining the direction of cell migration. This polarization can occur in both individual
and collective cell migration on the basis of changes in orientation and composition of
filamentous F-actin distribution [100, 117]. However, over a distance of several cell lengths
(~100 pum), no cell always follows a constant path in space [118]. Contractile myosin
components are preferentially localized at the rear of the cell, whereas actin is localized
in the front [119]. Turning cells have asymmetric shapes and actin distributions. Myosin
contractions at the rear of the cell use functions similar to rear-wheel steering in a car to
remain stable during sustained rotation.

Human bladder epithelial cancer cells are more deformable than normal cells [120]. This
finding has also been observed in breast cancer, in which an approximately ~50% decrease
in filamentous actin (F-actin) during cytoskeletal reorganization has been associated
with increased metastatic potential [121, 122]. The loss of polarity in cancer tissue was
reported in 1941 in carcinoma in situ (CIS) [123], which was first described in 1932 as a
noninvasive carcinoma of the breast [124]. Broders described CIS in the epithelial layer as a
lesion of malignant epithelial cells, with their progeny located at or near positions previously
occupied by their ancestors before malignant transformation or migration and breaching of
the basement membrane. However, noninvasive means non-migrating, in concordance with
actin findings. CIS does not show lymph node or other metastasis, but CIS in the periphery
with multifocal or multicentric localization is present in as many as 40% of breast cancers
[125, 126]. More detailed information regarding CIS is provided in the supplemental
material (Supplement, part 9, Carcinoma in situ).
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Migration induced by signaling

The anti-inflammatory lipid mediator Resolvin D1 (RvD1) [127], within a co-culture of
CAFs isolated from hepatocellular carcinoma (HCC), has been found to suppress cartilage
oligomeric matrix protein (COMP) secretion, thereby inhibiting CAF-induced EMT [128].
Plasminogen activator inhibitor-1 (PAI1) from CAFs in esophageal squamous cell carcinoma
(ESCC) binds the PAI-1 receptor low-density lipoprotein receptor-related protein 1 (LRP1),
thereby activating Akt and Erk1/2 signaling, and inducing migration and invasion of ESCC
and macrophages [129].

CAF-inducing migrating phenotype

CAFsincrease the expression of alpha smooth muscle actin (a-SMA), fibroblast activation
protein (FAP), fibroblast-specific protein 1 (FSP1), platelet-derived growth factor receptor
(PDGFR)-a/B, and vimentin [130]. These increases are associated with cell contractility
(a-SMA), FAP, cell differentiation (FSP-1, S100A4), receptor tyrosine kinase activity (PDGFR-
a/B), and cell motility (vimentin). Coexpression of vimentin and Keratin intermediate
filaments in cancer cells enhances the migratory and invasive subtype [131-133].

FSP-1 binds Ca2* and is expressed by inflammatory macrophages [134], thus explaining
the close interaction of cancer cell migration with parts of the immune system. Changes in
transcription factor expression contribute to the disruption of homeostasis and consequent
transformation to heterogeneous CAFs [135]. This heterogeneity has been reported to be
associated with the provenance of CAFs [136].

Furthermore, the heterogeneity suggests that [137] CAR-T cell technology is unlikely to
be helpful in the short or mid-term for heterogeneous cancers. In contrast, if, for example,
leukemia were caused by one heritable mutation, the CAR-T approach would be reasonable.

Highly aggressive hepatocellular carcinoma (HCC) cell lines with high metastatic
potential promote liver fibroblast migration and transformation into CAFs [138]. The
mechanism involves the EGF-like domain multiple 7 (Egfl7). Early HCC recurrence (within 2
years) exhibits greater CAF infiltration than observed in patients without early recurrence,
thus indicating an important role of CAFs. More detailed information on the association
of CAFs with Egfl7 is provided in the supplemental material (Supplement, part 7, CAF
interaction with Neuropilin-1 and EGF-like domain-containing protein 7).

Changes in the stiffness gradient, chemotaxis, spatial asymmetry, and polarization
induce enhanced cell migration and immune system suppression, thereby increasing cell
motility and cell mobility, and enabling metastasis.

Cell mobility

Decreased cell-cell interactions result in changes in epithelial morphology, cell
transition, and cell movement [3, 139, 140]. Downregulation of Ca?*-dependent homophilic
adhesion receptors and cadherins, such as E-cadherin, during carcinogenesis is associated
with increases in mesenchymal markers, such as fibronectin, and vimentin. As E-cadherin
decreases, greater cell motility and higher rates of cell transformation are observed [141].
This response appears to be a last attempt by the biological system to restore homeostasis.

The actin protein Espin is overexpressed in cancer and promotes filopodial formation,
thereby facilitating cancer cell migration and metastasis [142]. The microfilamentous
cytoskeleton turnover in polymorphonuclear neutrophils is activated by chemotactic factors
[143]. Exposure to the carcinogen, 7, 12-dimethylbenz [a]anthracene (DMBA), induces
premalignant lesions in hamster cheek pouch mucosa, and is followed by formation of
pseudopodia in stromal tissue cells and epithelia, including surrounding leukocytes [144].
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Joseph Locker, in 1970, demonstrated that 48 hours after liver cancer cell inoculation in
chick embryos, the tissue was invaded, and pseudopodia were observed together with loss
of tight junctions, disruption of the epithelial organization, and liver metastases after 72
hours [145].

Lamellipodial formation

Lamellipodial formation is a complex actin-dependent process that results in the
formation of flat sheet-like protrusions, thus leading to slow adhesive movement [146].
Lamellipodia preferentially extend in the direction of gradients [147]. Elongation of
connective tissue in vivo and ex vivo results in the formation of new lamellipodia in fibroblasts
within minutes, whereas in unstretched tissue, the fibroblasts show normal dendritic
morphology [148, 149]. Although movement is generally slow, changes in the composition of
actin filaments within lamellipodia occur rapidly with polymerization and depolymerization
[150]. However, for cell migration, another precondition beyond the deformation of the
cytoplasm must be met. Deformation and expansion of the laminar surface of the nucleus
are required to enable cell migration through narrow spaces [151], such as the stiff ECM.

Furthermore, transformation of MSCs into CAFs has been described [152]. Ongoing
TGFf elevation (chronic inflammation) results in CAF elongation mediated via Rac, RhoA,
and ROCK, and leads to cell spreading, lamellipodial formation, and spheroid invasion [153].

Cancer cells, as well as the PCN, induce LOX activity, and increased focal adhesion
kinase (FAK), src, and Crc [154]. CAFs induce p130(cas), thus resulting in the formation
of p130(cas)/crk/DOCK180 and, via RAC-GTP, increased lamellipodia, decreased actin fiber
function, and elevated cell motility and mobility (see below FIGURE 2). No rapid movement is
necessary, because the initial barrier after the first cancer cell has developed and integrated
into the target tissue is loss of adhesiveness mediated by a decrease in E-cadherin [3, 14].

Crossing the basement membrane

When epithelial cancer cells grow, the basement membrane, including collagen type
IV, poses a barrier to cell movement or a so-called restriction line. Alpha 3 beta 1 integrin
[155] and metalloproteinase 9 (MMP-9 or gelatinase B) [156] are associated with increased
collagen 1V degradation, invasiveness, and migration [157], thus facilitating the transport of
cancer cells across the basement membrane [158].

Extracellular vesicles

Long distance cell communication influences metastasis in a different manner. Cells
can release extracellular vesicles (EVs), which are nanoparticles 50-500 nm in diameter
[159]. Despite having been known for approximately 30 years, EVs were initially assumed
to be cellular “junk” [160]. EVs are secreted vesicles, including exosomes and microvesicles,
that contain proteins, lipids, and nucleic acids (such as mRNA and miRNA). In 1981, EVs
were recognized as vesicles containing enzymes [161]. Later, EVs were found to be able to
communicate over long distances [162].

Furthermore, EVs can modulate the immune system around primary tumors, thus
creating pro-metastatic conditions. This phase, in accordance with seed and soil theory,
is described as “preparing the soil” [163]. Autocrine, paracrine, and endocrine signaling
induced by EVs does not require direct cell-to-cell contact [160]. EVs can contain the small
GTPase Rab27a, which is overexpressed in breast cancer [164]. Inhibition of Rab27a in
breast cancer decreases EV secretion, the number and size of lung metastases [165], and
the accumulation of tumor-promoting tumor-associated neutrophils (TANs) [160]. EVs
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easily travel through the ECM. Aquaporin-1 (AQP1) within the EV membrane mediates EV
deformability [159] and therefore facilitate easy and efficient EV travel through the ECM to
target cells. Plant-derived EVs might provide a novel tumor-targeting delivery system for
cancer treatment [166].

Blebbing (motility without adhesion)

Blebs are short-lived cell membrane protrusions which are bulky and have a rounded
morphology [167]. Blebs undergo rapid expansion followed by a short static phase and slow
retraction lasting approximately 1 minute [168-170]. Blebs were first observed as transient
changes in corneal endothelium by doctoral student Steve Zantos and his supervisor Brien
Anthony Holden (1942-2015) [171]. After lens insertion, blebs can be seen for approximately
10 minutes. The expansion time with intracellular pressure on the cytosol initiates bleb
formation and is estimated to be approximately 5-30 s [172]. Polarized bleb accumulation
can persist for at least an hour and is integrin dependent [173]. Signaling by FAK, integrin
a2, and junctional adhesion molecule-1 (JAM-1) is involved in blebbing [174].

Blebs alter cell movement in vitro and in vivo, thus enabling amoeboid-like cell motility
[175] without adhesion [176]. Early blebs are initially actin negative but later become actin
positive, and the hydrostatic pressure necessary for movement relies on non-muscle myosin
1 (NMII) contractility [172]. Blebs are associated with decreases in lamellipodia [172, 177].
If the proportion of blebs becomes disproportional, the cell’s locomotion markedly slows
and the movement becomes less directed.

Furthermore, blebbing promotes cancer invasion, migration, and metastasis [170,
173, 174, 179, 180]. Increased blebbing is associated with aggressiveness and metastatic
behavior [173]. Changing the ratio of lamellipodia to blebs also influences the straightness
of movement. The locomotion strategy of progenitor cells in tissue appears to involve a
combination of blebbing and rapid straight-line forward movement. Lamellipodia are
believed to be necessary for fast movement, whereas blebs are believed to be required for
tumbling movements. The combination of both is believed to provide an optimized strategy
for the precise movement of cancer cells.

Switching cancer cell motility

Established liver tumors recruit CAFs and stimulate their own growth [181, 182]. Cancer
cells can be cohesive or mobile. TGFf signaling, together with Smad4, EGFR, Nedd9, M-RIP,
FARP, and RhoC, can collectively alter the motility of single or multiple cancer cells [183]. In
contrast to primary cancers, lymph node metastases intriguingly involve a collection of initially
non-motile cancer cells.

CAFs suppress the immune system

High SMAD3, even independently of TGFf, recruits CAFs in lung adenocarcinoma, and
CAFsin turn increase matrix metalloproteinases (MMPs) [184] and downregulate MHC class
[-restricted T-cells (CD8+ T-cells), which can kill cancer cells [185]. CD4+ T-helper (TReg)
cells are increased by CAFs [186], whereas CCL2 increases macrophage suppression [187].
Furthermore, CAFs regulate the immune system [188, 189] and can act as MHC class II-
expressing CAFs presenting antigens to CD4+ T cells, thereby modulating the immune
response in pancreatic tumors [74]. However, the disruption of homeostasis by CAFs can also
suppress the immune system and facilitate pro-cancerous growth [190]. More information
regarding the important interactions of CAFs with Transgelin-2 and cluster of differentiation
74 (CD74) is provided in the supplemental material (Supplement, part 10, CAF, Transgelin-2,
and cluster of differentiation 74).
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The cancer microenvironment consists of tumor-associated cells (TACs), which further
influence cell migration and mobility, and create the preconditions for metastasis—the actual
process of cancer cell spread, which is followed by traveling (‘circulation’) and extravasation.

Tumor-associated cells

TACs are found in the tumor center and in its vicinity. These cells include tumor-
associated macrophages (TAMs), tumor-associated platelets (TAPs), tumor-associated
neutrophils (TANs), tumor-associated lymphocytes, tumor-infiltrating lymphocytes, and
tumor-associated dendritic cells (myeloid-derived suppressor cells). In principle, most TACs
are found in cancers with a pro- or anti-cancer role, and each type can be heterogeneous.

Tumor-associated macrophages and M2 macrophages

TAMs are broadly classified into anti-tumor M1 macrophages (classically activated
M1 macrophages) and cancer-inducing M2 macrophages (alternatively activated M2
macrophages). These macrophages are associated with cancers of the breast [191-193],
stomach [194], and liver [195]; cholangiocellular carcinoma (CCC) [196]; HCC [197]; and
prostate carcinoma [198-200]. TAMs can derive from so-called cancer stem cells [201].

M1 macrophages are classically activated in response to interferon-gamma (IFN-y) and
lipopolysaccharide (LPS), and are anti-tumorigenic. They are characterized by TNF-q, IL-1§,
IL-6, nitric oxide synthase (iNOS), and reactive oxygen species. They express CD80 (B7-1),
CD32, CD68, and CD11b (integrin alpha M or ITGAM), and they are crucial for immunity by
eliminating pathogens and cancer cells [202-208].

M2 macrophages are activated by IL-4, IL-10, and IL-13, and express various receptors,
such as TGF{3, CCR2, CD163, CD206 (mannose receptor), CXCR1, CXCR2, Dectin-1, scavenger
receptors A (CD204) and B-1 (SR-B1), macrophage receptor with collagenous structure
(MARCO, SR-A6), and arginase 1 (ARG1). These findings might explain why a TH2-type
immune response is observed in schistosomes, which causes bladder cancer [209]. More
information regarding the interactions of Alpha-1-B glycoprotein (A1BG) is provided in the
supplemental material (Supplement, part 11, Alpha-1-B glycoprotein).

When stimulated by cytokines, macrophage polarization and transition can change from
M1 toM2,and vice versa. Subsets of M2 macrophages include M2a, M2b, M2c,and M2d. Cancer
cells expressing cluster of differentiation 47 (CD47) induce further immunosuppression by
inhibiting phagocytosis and promoting cell migration [210]. More information regarding
the different MO expression profiles, as well as CD47 expressing cancer cells suppressing
phagocytosis is provided in the supplemental material (Supplement, part 12, TAM profiles
and cluster of differentiation 47).

Tumor-associated platelets

TAPs have a more complex role in nature and therefore are not differentiated by type 1
or 2. Pro-tumorigenic TAPs protect cancer cells against immune attack; mediate adhesion,
extravasation, and angiogenesis. They also induce cell transition or the release of soluble
platelet growth factors. Anti-tumorigenic TAPs increase macrophage recruitment and, after
activation, can destroy cancer cells [211, 212]. More information on platelets and TAPs is
provided in the supplemental material (Supplement, part 13, Thrombocytes).

Thrombocytosis (high platelet count) and/or megakaryocytosis is associated with
cancers and poor survival in epithelial cancers [reviewed in 213], whereas inhibiting platelets
decreases metastasis [214]. Furthermore, cancer cells activate and form aggregates with
platelets and leukocytes and consequently are able to evade the immune system [215, 216].
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Platelets themselves are activated by multiple pathways, such as neutrophil-released
cathepsin G [217], thromboxane A2 (TXA2) [218, 219], high-mobility group box 1 (HMGB1)/
Toll-like receptor 4 (TLR4) axis, and adhesion G protein-coupled receptor (GPCR) cluster
of differentiation 97 (CD97). Platelets support lung microvascular integrity independently
of their classic hemostatic pathways [220-222]. Platelets contain factors that promote cell
survival and support the endothelial barrier [223, 224], and influence the programmed cell
death pathway [225-227]. Moreover, platelets are present not only in the vascular space
during lung inflammation but also actively enter the alveolar space during experimental
lung injury [228, 229].

Although platelets play major roles in cancer metastasis by facilitating tumor cell survival,
immune evasion, and cancer spread to distant sites, one aspect and role in metastasis might
not have been interpreted correctly.

Aspirin has anti-platelet effects that correlate with favorable prognosis and diminished
clinically observed metastases [127, 230]. These observations might explain experimental
data from the 1980s on the anti-COX effects of aspirin, which indicated negative findings
[231]. The anti-platelet aggregation effects of aspirin were ignored. Chemotherapy
suppresses platelet production in the bone marrow, and this cytotoxic effect alone might
explain why the role of platelets in epithelial cancer metastasis were underestimated.

Platelets bind lysophosphatidic acid in breast cancer [232-234], ovarian cancer [235,
236], prostate cancer [237], kidney cancer [238], and oral squamous cell carcinoma [239].
Subsequently, they stimulate osteoclast resorption through IL6 and IL8, thus resulting in
bone metastasis [240] and osteosarcoma progression [241].

For metastasis, complement activation and thrombin [242] are also necessary.
Thrombin increases metastasis [243] and activates proteinase-activated receptor 1 (PAR1),
areceptor highly expressed on platelets and endothelial cells [244]. In contrast, the inhibitor
hirudin decreases metastasis [245]. Thrombospondin-1 (TSP-1) and prosaposin (PSAP)
have diverse functions. More detailed information regarding TSP-1 and PSAP is provided
in the supplemental material (Supplement, part 14, Thrombocytosis, Thrombospondin-1).

Metastatic spread is highly heterogeneous, but spleen metastasis is notably very rare.
The spleen is distinct from other organs in that it filters platelets highly effectively, thus
suggesting that platelets play a critical role in metastasis. Furthermore, the liver is involved,
and metastasis occurs far more often to the liver than any other organ. An important factor,
sialic acid, must also be considered as further discussed.

Platelet clearance

Platelets have a lifespan of approximately 10 days. Platelet clearance occurs within the
spleen by splenic macrophages. Additionally, aging platelets are eliminated in the liver by
Kupffer cells, probably through desialylation, a process in which sialic acid on the cell surface
is removed from glycans, glycoproteins, or glycolipids [246-248]. Asialoglycoprotein
receptor 1 (ASGR1), a sialic acid receptor, participates in clearance of sialic acid from the
liver and thereby functions as a tumor suppressor. This receptor is often downregulated in
HCC versus normal liver tissue and is associated with a poor prognosis.

ASGR1 knockout promotes HCC development [249, 250]. In contrast, asialoglycoprotein
receptor 2 (ASGR2) acts as a tumor promoter in gastric cancer [251] and is associated with
cancer recurrence [252]. Moreover, high expression of ASGR2 is associated with gastric
lymph node metastasis and venous invasion [253]. More detailed information regarding
desialylation and platelet clearance is provided in the supplemental material (Supplement,
part 15, Desialylation and thrombocyte clearance).
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Blood transfusion activates TAPs

Controversial positive and negative prognostic studies have described outcomes
after blood transfusion in patients with cancer [254]. However, red blood cell transfusion
results in cancer cell activation and aggregation by the adenosine diphosphate (ADP)-
P2Y12 receptor pathway [255]. Furthermore, red blood cell transfusion is associated with
decreased survival, earlier recurrence, and increased metastasis [256-260]. Furthermore,
patients with early stage [ breast cancer patients who receive blood transfusions have poorer
survival and earlier recurrence than patients without transfusion post-surgery [261].

The associations found in patients with cancer after blood transfusion (decreased
survival and disease-free time, higher metastasis rates) are logical, particularly in the context
of TACs, because transfusion-induced activation of TACs, particularly by TAPs, might explain
these observations.

Tumor-associated neutrophils

TANs have various subtypes: N1 has anti-tumoral roles, whereas N2 facilitates migration
of cancer cells [262, 263]. In CRC, IL-8 promotes neutrophil activation [264], and TAN
promotes peritoneal cancer cell adhesion [265]. N1-TAN releases hydrolytic enzymes, or
activates macrophages, dendritic cells, or T-cells. N2-TAN induces gelatinase B, an important
enzyme for cancer growth and metastasis [266]. TANs release TIMP-free MMP-9, which is
associated with very aggressive cancer [267].

Moreover, CRCs induce polarization between N1 and N2 by TGF( with consequent
increase in the N2 subtype [262, 268].

N2 recruitment occurs via CXCR2 in a manner regulated by IFN-y [269]. Precursors
of TAMs and TANs are located in the spleen and are readily recruited [270]. TANs promote
invasion of cancer cells into lymph nodes [271].

Circulating TANs suppress peripheral leukocyte activation [272], and CTCs protect
themselvesvia CD44 building clusters [273]. Cathepsin Creleased by neutrophilsisassociated
with cancer progression and metastasis [274], and is also correlated with M2 macrophages
in lung cancer [275]. The inhibition of TAPs diminishes this effect and decreases metastasis
[276].

Cancer cells, as well as CAFs, induce the formation of neutrophil extracellular traps
(NETs), which promote migration and metastasis. NETs are found in various epithelial
cancer tissues, the vascular system, and in distant metastases. An anti-NET approach might
inhibit both migration and metastasis [277-279].

Abundant polymorphonuclear myeloid-derived suppressor cells in primary and
metastatic lung cancer have been measured in the blood and found to be inversely correlated
with low frequencies of NK cells [280]. Furthermore, NETs promote liver metastasis and
have been measured in patients undergoing curative liver resection for metastatic CRC
[281]. NETs can trap CTCs [282] and serve as an adhesion substrate [283]. TANs appear to
facilitate omental metastasis in ovarian cancer [284]. NETs promote liver micro-metastasis
and have been measured in pancreatic cancer through the activation of CAFs [285]. NETs
from TANs wrap around and consequently protect CTCs against immune attack [286]. In
addition, inhibition of NETs protects against adhesion to liver sinusoids and metastasis
[287].

Furthermore, TAPs, via allbf33, shield CTCs in the bloodstream and consequently protect
them against immune attack [288]. TAN attachment, via ICAM-1 and Mac-1, to CTCs enables
transendothelial migration and extravasation [289]. Neutrophil-derived leukotrienes
facilitate colonization of distant tissues [290]. Furthermore, TANs form clusters in the
bloodstream [291].

Each tumor-associated cell (TAC) type has anti- and pro-tumor functions. As cancer
growth increases, pro-tumor functions increase, and immuno-competent cells are suppressed
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(immune escape). Therefore, pro-tumor TACs promote cancer cell dissemination from
primary tumors, as well as transendothelial migration, vascular stream survival, nidation,
colonization, and metastatic growth at distant sites.

Chemokine CXCL12 (stromal cell-derived factor 1, SDF-1) signaling

CAFs produce the chemokine CXCL12 (stromal cell-derived factor 1, SDF-1), which is
chemotactic for mesenchymal cells [292]. Furthermore, fibroblasts [293], bone marrow
fibroblasts [294], CAFs [295], and particularly platelets are major sources of CXCL12 [296,
297]. Information regarding butyrophilin signaling and crosstalk in this context is provided
in the supplemental material (Supplement, part 16, Butyrophilin molecules).

CAFs coat cancer cells, thereby suppressing T-cell infiltration by CXCL12 and resulting in
quiescence of the cancer-immune response, with expression of Cxcl9 [298].

The maintenance ofhomeostasisincludes diverseresponsesacrossall biological systems.
Therefore, the disruption of homeostasis in cancer is both complex and heterogeneous. The
CAF subtype can switch from an immune-suppressive (CXCL12+/CXCL9-) to an immune-
activating (CXCL12-/CXCL9+) subtype. Furthermore, chronic inflammation increases
CXCL12 [299] which in turn induces cancer progression through AKT and ERK signaling
[300-302].

Cancer cells proliferate through PI3k/Akt signaling by CXCL12 [303-306]. Increased
TGFf signaling induces EMT via Wnt in breast cancer [307] and, TGFf3, together with CXCL12
expression, promotes cervical and breast cancer growth [308]. Furthermore, cancer cells
follow a CXCL12 gradient [309]. More detailed information on CXCL12 is provided in the
supplemental material (Supplement, part 17, Chemokine CXCL12).

Egfl7 increases FAK and Akt phosphorylation via the av33 integrin receptor, and both
recruit and activate liver fibroblasts to adopt the CAF phenotype [138]. For example, integrin
a6B4 induces formation of lamellae and cell migration [310], with upregulation of PI3K
and NF-«kB [18]. Furthermore, integrin activation results in the production of fibronectin
and insoluble fibrils, decreased p38 and cell proliferation [311]; consequently, cell binding
promotes migration [312].

Cancer cell coating by CXCL12-Keratin 19

Cancer cells can be coated through CXCL12-Keratin-19 filamentous formation and
consequently hidden from T cell-mediated immune reactions [313]. Subsequently,
intravasation, traveling (‘circulation’), extravasation, and colonization of distant organs
increase. Cancer cells can assemble CXCL12 together with Keratin 19 as a coating for immune
evasion. Further details are discussed below.

Keratin 19 [314] is part of the cytoskeleton in epithelial cells and is found in epithelial
cancer cells [315,316]. CXCL12, a small cytokine, was identified in 1993 from a bone marrow
stromal cell line and described as an intercrine-macrophage inflammatory protein [317].
Its structure was identified in 1994 [318]. While the CXCL12 mRNA is decreased [319], its
expression in tissues is associated with metastasis.

Theinterplay of chemokines with thereceptoras CXCL12/SDF-1alphaand CCL21/6Ckine
exhibit peak levels of expression in organs that are the first destinations of breast cancer
metastases [309].

The underlying complex framework described herein provides a basis for understanding
metastasis in a new light. Several terms used herein are defined below.
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Niche

The term niche comes from the Latin nidus, meaning nest. Pre-metastatic niches are a set
of prerequisite conditions for tumor growth and access to the vascular system (intravasation:
hematogeneous and lymphatic). Pre-metastatic niches are followed by circulation (better:
traveling). Only after nidation can colonization occur at sites distant from the primary cancer,
thus resulting in metastasis. To date, the term “metastatic niche” has been characterized as
aregion of increasing metastatic potential [320], followed by perivascular conditions [321].
In the bone marrow, the metastatic niche takes the form of an endosteal niche in regard to
osteoblasts [322].

Cancer satellite (CS)

The definition of cancer satellites provided by the National Cancer Institute is “discrete
tumor cell clusters near the primary tumor.” However, the original meaning of satellite comes
from the Latin satelles, meaning one who escorts or follows e.g. behind an important person.
We therefore use the term “satellite” to describe cancer satellite complexes in metastasis in

the original (non-modified) manner, as a cell or particle escorting another from one location
to another more distant location.

Circulation

The term circulation is not completely correct, because it incorrectly implies that cancer
satellites can circulate within the human body for more than one round of circulation. Only
one cancer cell is found per million cells [323, 324 reviewed in 325]. Only 0.2% of cancer

1ls in circulation form m wher .8% are effectively elimin he immun
system. The term “circulation” in the context of cancer cells and metastasis is simply an
incorrect assumption. However, to avoid confusion, we use this term because it has become
commonplace, together with the much more appropriate, correct term of “traveling”.

Gradient

A gradient in cell biology, and within the extracellular matrix, is a fundamental
process, enabling embryogenesis, as well as adapting conditions (compensate) disruption
of homeostasis. A gradient is a measure of the spatial variations over a certain space in
the composition (secretion by cells of types and amount of protein and/or enzymatic
modification), mechanics (change of mechanical forces by properties in stiffness and
elasticity) and chemistry (changes in the concentration), resulting into a physical quantity.
By this, the gradient by component, mechanical, chemical and physical composition, guide
movements, such as cell migration towards a direction.

Adhesion

Adhesion is fundamental to cell-cell communication and crosstalk [3, 14]. Adhesion
after ECM migration and invasion precedes transendothelial migration and is mediated by
the carbohydrate-binding molecules known as selectins [326-328]. The three main types
of selectins are E-selectin (expressed on activated endothelial cells and promyeloblast
cells), P-selectin (expressed on endothelial cells and platelets), and L-selectin (expressed
on activated platelets and leukocytes). To plausibly explain how metastasis occurs, pre-
conditions for cell spread in terms of adhesion, E-selectin, P-selectin, and L-selectin are
important, and are detailed in the supplemental material (Supplement, part 19, E-, P-, and
L-selectin). Transendothelial migration is multifaceted and has been reported in detail
elsewhere [100, 102,108, 110, 116, 119, 176, 294, 303].
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Metastasis

In cancer, metastases describe secondary cancers that occur at distant sites in the body
from primary cancers. We recognize that 107 cells (i.e., 10 million or 10, 000, 000 cells) must
be present for a tumor nodule to be detected by imaging, and the average number of cells
in a tumor when it is first palpable is 108 cells (i.e., 100 million or 100, 000, 000 cells) [19].

Therefore, how carcinogenesis and its first cancer cell occurs must be identified. Such
identification has been systematically performed over 25 years [3, 4, 14-19, 127]. The
same methods have also been applied to metastasis, to identify the essential sine qua non
prejudices and to elucidate what comes first and later results in transendothelial migration,
intravasation, and traveling before metastasis can occur.

Fundamental sequence of events in metastasis

Pre-metastatic niche 1 (PMN-1) (FIGURE 2)

PCN transforms into a local PMN-1 involving cancer cell development and an increase in
CAFs and subsequent cancer growth and angiogenesis, thereby ensuring cancer cell nutrition
and lymphogenesis for the necessary lymphatic drainage. This serves for the growth of cancer
cells, but also in parallel as a proclivity for metastasis. Ongoing mesenchymal-epithelial
transition (MET) in CAFs increases cancer cell numbers and growth, with heterogeneous
CAFs and pools of cancer cells.

CAFs and LOX signaling induce crosstalk between FAK and p130(cas)-Src-Crk and
formation of the p130(cas)/crk/DOCK180 complex, a necessary precursor for the formation
of lamellipodia. Subsequently, lamellipodia enable cell mobility and motility and are a
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Fig. 2. Pre-metastatic niche 1 (PMN-1): With increasing disruption of homeostasis, the pre-cancerous
niche transforms into a premetastatic niche 1 (PMN-1): the heterogeneous CAF cell pool together with
lysyl oxidase by heterogeneous cancer cells induce p130(cas)/crk/DOCK180 complexes and, via RAC-GTP,
increased lamellipodia, decreased actin fiber function, and enhanced cell motility and mobility. Decreased
apoptosis and loss of cell-cell contact inhibition, reinforces cancer cell growth, and invasion of the basal
lamina. CAFs begin to release fibronectin and CXCL12, and cancer cells release CXCL12 and Keratin 19.
Platelets, neutrophils, and macrophages are increasingly recruited and later serve as prerequisites for pre-
metastatic niche 2 (PMN-2) formation.
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prerequisite for increasing migration toward the endothelium.

In parallel, an induced decrease in apoptosis (cell death), as well as loss of cell-cell
contact inhibition, reinforces cancer cell growth, and encourages invasion of the basal lamina
and subepithelial layers and subsequent population of the deeper stroma. This process is
recognized in the TNM classification as T-stage evolution from T1 to T4.

Subsequently, additional fibroblasts are recruited, and CAFs increase and begin to
release fibronectin and CXCL12 into the stroma, as well as Keratin 19. Platelets, macrophages,
neutrophils, monocytes, and T-cells are recruited to the tumor microenvironment.

Pre-metastatic niche 2 (PMN-2) (FIGURE 3)

Pre-metastatic nice 1 (PMN-1) is transformed into PMN-2. Various subsets of tumor-
associated cells (TACs), such as tumor-associated macrophage (TAMs), tumor-associated
plateles (TAPs), and tumor-associated neutrophils (TANs), develop during ongoing signaling
and crosstalk. Anti-tumorigenic TACs increasingly transform into pro-tumorigenic TACs
with local immunosuppression and a lack of CD8+ T-cell immune evasion.

Furthermore, cancer cells, as well as CAFs, additionally induce the formation of
neutrophil extracellular traps (NETs), which promote migration and metastasis, and are
found in various epithelial cancer tissues, the vascular system, and distant metastases [329].
The CXCL12 and fibronectin gradients expand. Cell mobility is also facilitated by ongoing LOX-
induced formation of lamellipodia, thus promoting cell motility. Blebbing and EVs further
increase the motility and travel of CAFs and cancer cells. Meanwhile, increased fibronectin,
CXCL12 release, and decreased F-actin result in formation of a CXCL12- and fibronectin-
gradient, along which increasingly mobile cells migrate toward the endothelium as a step
towards travel away from the primary tumor.
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Fig. 3. Pre-metastatic niche 2 (PMN-2): Various subsets of tumor-associated cells (TACs), such as tumor-
associated macrophages (TAMs), tumor-associated platelets (TAPs), and tumor-associated neutrophils
(TANs), develop during ongoing signaling and crosstalk. Anti-tumorigenic TACs increasingly transform into
pro-tumorigenic TACs with local immunosuppression and a lack of CD8+ T-cell immune evasion. Neutrophil
extracellular traps (NETs) from TANs are increasingly released, and heterogeneous CAFs and cancer cell
pools develop. The graphical icon of NETs in Figure 4 was adapted with modifications from prior research
[329].
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Pre-metastatic niche 3 (PMN-3) (FIGURE 4)

PMN-2 transforms to PMN-3 as further disruption of homeostasis occurs, and serves as
a prerequisite for metastasis. The evolution of the pre-metastatic niche (PMN) leads to PMN-
3, in which intravasation of cancer satellites, involving trans-endothelial migration, provides
access to the vascular system. This process is recognized in the TNM classification as further
cancer evolution with hematogeneous (V), lymphatic (L), and perineural (Pn) invasion.
Transendothelial migration alone is complex with its adhesion (Supplement, part 18, E-, P-,
and L-selectin).

PMN-3, according to current knowledge, comprises eight cancer satellites, which
access intravasation and subsequently travel (or, as usually described, “circulate”) far from
the primary tumor. The fundamental prerequisites for metastasis are met by eight cancer
satellites, including Trojan horses, which enable immune escape, as follows: (1) Cancer cells
and (2) CAFs both migrate along the CXCL12 and fibronectin gradient. (3) CAFs surround
cancer cells and migrate. (4) CXCL12 and Keratin 19 coated cancer cells migrate. (5) CAFs
and (6) cancer cells are surrounded by platelets and migrate. (7) Neutrophils form NETSs that
shield CAFs and (8) cancer cells, thus facilitating migration and traveling.

The dissemination of cancer satellites is not synonymous with metastasis despite often
being described as such. It sets the stage for later metastases. Maybe even M2 macrophages
surround CAFs and cancer cells. However, cancer cells are surrounded by CAFs [330].
Platelet inhibition decreases metastasis and cancer cell adherence to platelets via P-selectin
[214, 331]. Cancer cells are surrounded by platelets [332], which impede natural killer cell-
mediated elimination of tumor cells [333]. Therefore, various cancer satellites to facilitate
metastasis are created.
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Fig. 4. Pre-metastatic niche 3 (PMN-3): Metastasis in epithelial cancer occurs in parallel with carcinogenesis
after the pre-cancerous niche transformed into pre-metastatic niches (PMNs), which are indispensable to
the origin of metastasis. Pre-metastatic niche 2 (PMN-2) transforms to pre-metastatic niche 3 (PMN-3) by
ongoing signaling and crosstalk. PMN-3 serves as prequisite for intravasation, traveling, and how metastasis
arises. According to current knowledge, a series of eight heterogeneous cancer satellites develop, including
Trojan horses (immune evasion), alongside reciprocally affecting sequences, and subsequently travel (or,
as usually described, “circulate”) alone or in combination, far from the primary tumor. The fundamental
prerequisites for metastasis are met as follows: (1) Cancer cells and (2) CAFs both migrate along the CXCL12
and fibronectin gradient. (3) CAFs surround cancer cells and migrate. (4) CXCL12 and Keratin 19 coated
cancer cells migrate. (5) CAFs and (6) cancer cells are surrounded by platelets and migrate. (7) Neutrophils
form neutrophil extracellular traps (NETs) that shield CAFs and (8) cancer cells, thus facilitating their
migration and traveling.
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As neutrophils surround cancer cells or CAFs they expel NETs, together with nuclear
histones, and granular and cytoplasmic proteins [334-336]. NETs facilitate liver metastasis
[337], and have been observed in gastric, liver, and pancreatic cancers [337-339], as well
as other epithelial cancers. Moreover, NETs aid in building clusters with growth at the
peritoneal in gastric cancer [277, 340].

Pre- and malignant cells and various aggregates with various metastatic capabilities have
been found in cancer nodules and observed to have high heterogeneity [341, 342]. These
findings might explain why both single cells and clusters of cancer cells have been detected
in cancer blood samples [343]. Platelet-cancer cell cancer satellites are fundamental for
metastasis. The cancer satellites created from platelets with cancer cells and CAFs explain
also early reports of local recurrence, such as that observed 19 years after resection of a
primary tongue carcinoma or a long-term course in a breast cancer with a duration of 15
years in 1885 [344].

Metastasis is a complex phenomenon. After transendothelial migration, cancer satellites
travel and if not eliminated by the immune system, extravasate after arriving at vascular
endothelial capillaries. Furthermore, when cells grow, transendothelial migration occurs
synchronously with local micro-metastasis, i.e.,, the metastatic colonization observable
under a microscope.

Implications

A brief overview of implications to minimize or prevent metastasis is as follows:

As discussed, in patients with cancer, platelet aggregation and inhibition should be
considered immediately after diagnosis.

This approach could also be used to mitigate the potential for metastasis.

Even patients post surgery should receive a low molecular anticoagulation regimen
to inhibit platelet aggregation. The drugs should be coated to facilitate resorption in the
jejunum and minimize gastric adverse effects.

Anti-inflammatory therapy: a much more effective anti-cancer therapy approach would
balance the treatment with an anti-chronic inflammatory regimen.

Anti-fibrotic therapy: a much more effective anti-cancer therapy approach would
include an anti-fibrotic regimen.

Although measured and observed daily worldwide, changes in the values of platelets,
macrophages, neutrophils, monocytes, as well as other immunocompetent cells, are
interpreted primarily as adverse effects of multimodal therapy. However, as described
herein, these routine laboratory parameters could be used to create models to predict cancer
progression and the potential for metastasis before it occurs.

Current cancer treatment regimens comprising multimodal therapy with chemotherapy
and/or combined immune therapy and/or radiotherapy protocols. These can lead to
thrombocytopenia, leukocytopenia, neutropenia, and monocytopenia, as well as decreases in
macrophages and other immunocompetent cells, such as T-cells, as well as TACs. Therefore,
whether therapy regimes used over several decades might be largely effective in terms of
anti-cancer effects, and/or in which percentage ranges induced by these standard-of-care
regimens or might have promoted metastatic development, because of their cytotoxic effects
on the cells listed, remains unknown.

Real-world data on the anti-cancer effects of multimodal treatment protocols must
measure each cell type together with TACs to determine whether the therapies are effective
or largely reflect the adverse effects of therapy, such as decreasing TACs with observed, if
minimal, anticancer effects.

This would apply to CAR-T therapy as it affects each cell type.

Applying such strategies in cancer surgery would be a challenge, because detailed
understanding of inflammatory and fibrosis and its remodeling [3, 14-19, 127] is necessary:
performing surgery too early might severely affect postoperative wound healing. Therefore,
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in pre-cancer surgery: anti-inflammatory and/or anti-fibrotic approaches should not be
performed 4 weeks pre-surgery, to avoid adversely affecting post-surgery wound healing.

Post-cancer surgery: both anti-inflammatory and/or anti-fibrotic approaches would
require an uneventful post-surgery course and a time delay of atleast 4 weeks postoperatively
(particularly for critical anastomosis).

Knowledge and understanding of molecular signaling are continually increasing.
The fundamental complexity of how metastasis arises could not have been observed or
recognized previously, because of the reasons discussed above.

The achievements of the giants, on whose shoulders we stand, are available but less
widely taught. Although many possible explanations exist, education has increased overall,
but the emphasis on basic sciences has decreased. Subjects such as biochemistry and
physiology are nearly globally underemphasized in the education of scientists and physicians.

For example, in human medicine, the field in which clinicians and scientists treat
patients with cancer, popular ideas have been implemented. The teaching content for, e.g,,
biochemistry and physiology has already decreased by nearly 50% under the rubric of the
so-called new (modern) medical course model (German: Modelstudiengang). This new way
of teaching has been described as an innovative approach blurring traditional disciplinary
boundaries and achieving an integrated practice-oriented approach for future scientists and
physicians. However, the warnings raised in many disciplines were ignored and subsequently
went silent, and the propagated declarations louder, especially, we argue in spiritu to Billroth,
that scientists keep both eyes on the past go blind, but in science, keeping on eye on the past,
may allow us to be more critical. Giulio Bizzozero (1846-1910) has already taught us that,
in science approximately 150 years ago, "the teacher should not present science as a series of
dogmas supported by the prestige of a name [...] but instead expose it in its true condition, with
its doubts and its questions” [English translation] [345].

Genetic and stem cell research have greatly influenced current knowledge and thinking,
and have been essential to many achievements in science. Over approximately 100 years,
the focus on promoting success in cancer and metastasis has been on genetics, while cancer
incidence has continued to increase [4]. However, as clearly indicated, neither somatic
mutation theory nor stem cell theory can explain carcinogenesis [4, 5] or metastasis
[Authors’ note: we have omitted to cite the abundant literature on this topic, as it is available
here: 5].

Additionally, a major paradoxical transformation occurred through misinterpretation of
correct statistical analysis, such that the data were incorrectly interpreted to be the cause of
cancer and metastasis.

One non-genetic example of the global cancer burden is the predicted increase in gastric
cancer incidence [346]. However, there might be an incorrect focus on the gastric cancer
diagnostics market, which has been predicted to increase within the next 10 years, to USD
970.95 million by 2034 [347].

Declarations that somatic mutations are “the” cause of cancer and metastasis have not
helped materially to date and are extensively reviewed earlier [5].

Aspects that cannot be explained are regularly phrased by statements such as “we
assume some aspects of genetics remain unknown”; more concerningly, most editors
accept such sentences. A quotation by Mechtilde Lichnowsky (1879-1958) from 1924 still
resonates:” Nothing is easier to learn than the art of approximation, nothing succeeds so much,
nothing prevails so convincingly, nothing is more stubborn in assertion, nothing is harder to
unmask because of the false resemblance to genuine” [English translation] [348].

A much more nuanced and differentiated way is psychologically contrary to a more
realistic but complex explanation, possibly because binary views are easy to accept, believe,
and propagate (please see “marketing and perception” in [4]).
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In Summary

The thought processes described herein suggest new previously underappreciated
aspects of most epithelial cancers and how they metastasize. Cancer can now be considered
a parasite, developed from one’s own cells, which lives in and harms its host by actively
transforming host cells into cancer cells. Various cell compartments are subverted, thereby
enabling cancer cells to undergo transendothelial migration and travel to distant parts of the
body (metastasis), with markedly increased mortality.

Cancer and metastasis are, in essence, states of disruption of homeostasis. The complex
framework of cell-to-cell communication, including signaling and crosstalk, highlights a
series of sequences positioned in relation to each other. The pre-cancerous niche (PCN)
during carcinogenesis is transformed through ongoing disruption of homeostasis, thus
leading to the evolution of pre-metastatic stages.

A series of eight heterogeneous cancer satellites, including Trojan horses to enable
immune evasion, alongside reciprocally affecting sequences, develop, which are indispensable
for intravasation, traveling, and mixed dissemination (metastasis). In parallel, the main
multimodal anti-cancer cell effects can now be seen in a new, previously unrecognized light.
The benefits might rely not on direct cancer cell effects but on indirect cytopenic effects,
which, to date, have been regarded merely as adverse effects.

Multimodal therapy in cancer, including metastatic cancer, interferes with the anti-
cancer functions of platelets, macrophages, and neutrophils, and further exacerbates disease
progression and metastasis.

Consequently, these findings might provide a new explanation for why combinations
of multimodal therapy can result in sudden observed efficiency, even in highly aggressive
cancers, such as triple negative breast cancer [349], which are subseqzently lost.

To date, studies on cytotoxic multimodal therapy efficiency in the past 50 years have
focused on observed effects of cancer cells, diminished cancer nodule growth in imaging, and
decreases in cancer cells and variables (such as prolonged time to recurrence and disease-
free survival), despite only minimal effects on overall survival. Now, a clearer understanding
of metastasis provides opportunities to treat cancer at multiple points, and to block or even
mitigate metastasis.

Consequently, multimodal treatments in patients with epithelial cancers cannot achieve
healing, but can only slow disease progression until drug resistance or death occurs.
Therefore, homeostasis is not merely a figurative term but clearly has a basis in multiple
biochemical, physiological, and pathophysiological pathways. Given the known high
redundancy in nature, and that homeostasis involves a balance among processes within the
body to maintain a state of health, additional cancer satellite complexes are likely to be found
and reported in the future.

Should Theodor Billroth’s (1829-1894) quotation from 1883, "The completeness of a
textbook always remains an illusion [...]“ [English translation] [350], or from 1881, “Everyone
sees the world only from their own perspective, considers themselves to be the center around
which everything emerges” [English translation] [351], be invoked as excuses? Or is it the
cancer research community, writ large, that has been on the wrong path?

Friedrich Schiller (1759-1805), in 1796 [352], stated: “What’s the hardest of all? What
you think is the easiest, to see with your eyes what’s in front of your eyes” [English translation].
This quotation applies not only to the long time not seen origin of the first derived epithelial
cancer cell. Although it was recognized by Rudolf Virchow (1821-1902) in 1856 [353], more
than a century was required to address it, on the basis of current knowledge of signaling and
crosstalk, and the identification of a mesenchymal cell precursor of the first cancer cell [15].

Scientific progress regarding cancer and metastasis has been slowed by a viewpoint
in which all its solutions are seen from solely a genetic perspective, and a symptom-based
therapeutic approach is followed.

The understanding of carcinogenesis and metastasis can no longer be viewed so
myopically. The efficiency of many currently applied therapies must be re-visited by
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addressing the aspects described herein. Many clinically and experimentally observed
adverse effects due to cytotoxic therapies are likely to be the reason for anti-metastatic
efficiency. Therefore, cytotoxic therapies in epithelial cancers are often associated with
transient (i.e., time-limited) responses and lower metastatic rates, but not patients’ quality
of life and rarely long-term survival.

Conclusion

Many great successes have been achieved in healthcare and science in the past 200
years [4]. However, success in most epithelial cancers, despite being discussed daily in the
media, have remained marginal. Survival continues to be reported in weeks or months, yet is
reported as “breakthroughs.” The theories of how metastasis occurs consist of vascular and
embolic genesis, the seed and soil theory, CTCs, and others [5] (Supplement, part 2-4) which
are insufficient to explain metastases as documented in this paper.

We addressed the fundamental questions in cancer biology between 2014 and 2022,
regarding how most cancers (80.5% epithelial) develop (Epistemology of the Origin of
CancerlI) [3, 5,14, 16-19, 127] and which is the first cancer cell (Epistemology of the Origin
of Cancer II) [15]. In essence, carcinogenesis is a disruption of homeostasis. More specifically,
the persistent disruption of homeostatic crosstalk by (1) ongoing pathogenic stimuli leads
to (2) chronic inflammation, which is followed by (3) fibrosis and (4) remodeling to a PCN.
If this step is unresolved, chronic tissue stress in the PCN results in an escape strategy, (5)
CSES (FIGURE 1). To resolve the CSES and restore homeostasis, a heterogeneous fibroblast
pool is recruited, which then undergoes EMT. Consequently, a heterogeneous pool of CAFs
develops and undergoes (6) MET. These CAFs express epithelial markers, which facilitate
their integration into the target tissue. This process explains why, later in carcinogenesis,
cancer cells “appear” as an epithelial type (Please see figures 1 to 3 in [15]). This neoplastic
transformation to a cancerous phenotype also explains the heterogeneity of tumors.

The third unanswered basic question in cancer biology pertains to the fundamentals
of how metastases begin. Here, we demonstrated the further breakdown of homeostasis,
in all its elegant complexities, to highlight the critical roles of pre-metastatic niches (PMNs)
(FIGURE 2 and 3), together with cancer satellites, in transforming various cell compartments
into Trojan horses enabling cancer cells and CAFs to successfully evade the immune system
(FIGURE 4).

Whether the newly reported organelle structures called hemifusomes—which consist
of two vesicles, one larger (~300 nm) and one smaller (~150 nm), partially fused via a
thin, lens-shaped membrane (hemifusion diaphragm) [354]—have roles in cancer and/or
metastasis is not currently known. However, we would not be surprised if such a role were
discovered.

The findings described herein and in the supplement are summarized in FIGURE 4
to illustrate a complex but plausible explanation for how metastasis in epithelial cancer
occurs in parallel with carcinogenesis after the pre-cancerous niche is transformed into
pre-metastatic niches (PMNs), which are indispensable in the origin of metastasis. Eight
heterogeneous cancer satellites develop, including Trojan horses responsible for immune
evasion, alongside reciprocally affecting sequences, travel alone or in combination, far from
the primary tumor. The fundamental prerequisites for metastasis are met as follows: (1)
cancer cells and (2) CAFs migrate along the CXCL12 and fibronectin gradient; (3) cancer cells
surrounded by CAFs are shielded from the immune system and consequently travel away
from the primary cancer; (4) CXCL12 and Keratin 19 coat cancer cells; (5) platelets surround
cancer cells and (6) CAFs, thus facilitating cancer spread; and (7) neutrophil extracellular
traps shield cancer cells and (8) CAFs.

Not all questions are answered in detail because of the complexity of the processes
involved. Of course, new questions will arise from new thinking on this topic. However, these
findings explain not only the heterogeneity of clinical and experimental findings, but also
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the marginal benefits of existing anti-cancer treatments observed to date, in terms of patient
survival measured in weeks or months, and why the cancer community remains far from
developing anticancer treatments that measure patient survival in years with improcements
in quality of life.

Metastasis, like carcinogenesis, occurs through a persistent disruption of
homeostatic crosstalk, and the direction of shifts at any given point is critical

Cancer research must be less dogmatic and decrease emphasis on therapies that show
significant p values, while placing greater emphasis on ameliorating the lives of patients
with metastatic cancer. Much of the existing understanding of cancer biology, particularly
metastasis, represents modest gains despite substantial effort. Therefore, as Johann
Wolfgang von Goethe (1749-1832) stated, the content provided is just a part of a detour:
“Science, as a whole, always moves away from life, and only returns to it through a detour”
[English translation] [355].
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