Volume 55

Special Issue 3 (in Progress)
Ion Channel Pharmacology

Ion channels are membrane integral proteins that allow highly controlled passage of ion through different kinds of cellular membranes. Cation channels are key players in physiological processes such as control of ion homeostasis, cell volume, vesicle trafficking, ROS production in mitochondria, secretion of neuro transmitter and paracrine or systemic hormone secretion and electrical control of excitable tissues. The channels integrate multiple cues into transient or persistent electrical signals. These cues may be of physical nature as for heat, cold, vibration, mechanical stress or can be metabolic factors like lipid metabolites (e.g. diacylglycerol, phosphoinositides, inositol 1,4,5-trisphosphate,‚Ķ) or even the ions conducted by the cation channels e.g. Ca2+. Potassium selective channels are the most genetically and functionally diverse of all cation channels. Starting with the first cloned potassium selective ion channel from Drosophila, Shaker, several hundred potassium channel genes have been identified in the human genome. A multitude of other channels that can be highly selective for one or even poly-selective extend the universe of cation channels. The number of functionally distinct channels in native tissues is further increased by heteromultimeric co-assembly of channel α-subunits with other β-subunits, other interacting subunits and other modifications such as alternative splicing of mRNAs, glycosylation, sumoylation and phosphorylation. Therefore, deranged functions of cation channels lead to a multitude of diseases. Consistently, the importance of cation channels in the treatment of diverse diseases is also amplified by the fact that many therapeutic drugs mediate their effects by targeting the cation channel proteins. However, the current knowledge of ion channel pharmacology is limited.
In this special issue of Cellular Physiology and Biochemistry a selection of articles paints a picture of ion channel pharmacology ranging from current modelling approaches, pharmaceutical chemistry, specific molecular ion channel pharmacology to animal and human pharmacology.

Prof. Dr. Guiscard Seebohm (Editor)

Structural and Chemical Basics:

Molecular/Mechanistic Pharmacology: